Lycée La Martiniére Monplaisir PT

TD;; — Equations différentielles

Exercice 1

Résoudre les équations différentielles suivantes

1. 3 + cos(z)y =0 3.y +cos®(2)y =0
4. 1+ 2%y — 22y =0
1 1-2
2.y + ——y=0 ' Ty=
v+ xln(m)y Y+ —5y=0.

Exercice 2

Résoudre les équations homogenes suivantes sur un intervalle de R que 1’on précisera.

L. (14+2%)y +2y=0 3 4 1 —0
IRV i
1 4. zy' + 2%y =0
/
2. 2y - 112797 0 5. cos(z)y’ + sin(z)y =0

Exercice 3

Résoudre les équations différentielles suivantes :
(B) Yy +y=t+e

(E») y" — 2y +y = e +cos(t)

Exercice 4

Résoudre les équations différentielles suivantes, en étudiant les éventuels raccordements :
(B1)  tt=1)y +y=t

(E2) (e! — 1)y + (e' + 1)y = 3 4 2¢°

Exercice 5

Résoudre |z|y —y = 22

Exercice 6

Soit @ un réel strictement négatif. Résoudre (E) : ty” + 2y — aty = 0 en posant z(t) = ty(t).

Exercice 7

Soit a et b deux nombres réels et ¢ une fonction continue, le but de cet exercice est de résoudre
I’équation différentielle suivante, appelée équation d’Euler :

2y + aty’ + by = c(t) (€)

Elle ne fait pas partie des équations que le cours nous apprend a résoudre. Via un changement de
fonction inconnue on va se ramener a une équation que ’on sait traiter

1. Déterminer 1’ensemble des solutions de 1’équation y” — 2y + 5y =0
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2. Soit y : RL — R unefonction deux fois dérivable sur R} . On définit z : R —

R

t =yt z = y(e®)

Justifier que z est deux fois dérivable sur R et calculer 2’ et 2” en fonction de y et de ses
dérivées.
3. Montrer que y est solution sur R’ de (&) si et seulement si z est solution sur R d’une équation
différentielle linéaire d’ordre 2 que ’on précisera.
4. Résoudre I’équation d’Euler
t2y" —ty +5y=0 (&)

Exercice 8

On considere 'équation différentielle (F) : zy”(z) — o/ (x) + 4ay(z) = 0.
1. Pour t €]0, +oo[, on pose f(t) = y(v/t). Déterminer ’équation différentielle vérifiée par f
équivalente a celle vérifiée par y.
2. Résoudre (E) sur ]0, +o0[.
3. Résoudre (E) sur | — o0, 0].
4. Résoudre (E) sur R.

Exercice 9

On considere ’équation différentielle
(B) %y +4ty +2y=1

1. A laide du changement de variable ¢t = e®, déterminer les solutions de Péquation différentielle
sur ]0, +00]
2. En déduire les solutions de (E) sur | — o0, 0].

Exercice 10

Soit (E) : (1—t*)y" —ty +y=0.
1. Résoudre (E) sur lintervalle | — 1,1[ (on pourra poser t = cos(u)).
2. Résoudre (F) sur 'intervalle |1, +oo] (faire un changement de variable bien choisi comme en
1.)
3. A Paide du résultat de la question 2., résoudre (E) sur l'intervalle | — oo, —1].
4. Déterminer les solutions de (E) sur R.
5. Retrouver les résultats précédents par une autre méthode.

Exercice 11

On considere ’équation différentielle
(E): 2y (t) + 4ty (t) + (2 — P)y(t) = 1 sur 0, +oo[

Résoudre (E) en posant z : t — t2y(t)

Exercice 12

On considere I'équation différentielle
(E): 1+a)y" —y —2y=0 sur | — 1, 4o00|

1. Déterminer une solution de (E) de la forme x — exp(azx)
2. En déduire toutes les solutions de (E).

Exercice 13

On consideére I’équation différentielle

14 222 1
E): 14+ 22" + 4oy + =
(E) ( Jy YTl 1422
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1
1. Soit h : & — ——. h est elle solution de (E)?

V1+ 22

2. En déduire toutes les solutions de (E).

Exercice 14
Résoudre les systemes différentiels suivants :

(S){x’:w+y (S,){x':x—y

y=z-y y' =2y

Exercice 15

A T'aide d’un systeme différentiel linéaire, résoudre ’équation linéaire d’ordre 3 :

y® =3y —y +3y=0.

Exercice 16

Soit n > 1 et E =R,[X]. Pour P € E on pose f(P)= (X +1)P'+P
1. Montrer que f est un endomorphisme de F
2. A Taide de sa matrice dans la base canonique, justifier que f est diagonalisable.
3. Déterminer les éléments propres de f.

Exercice 17

Soit E I’ensemble des fonctions de classe C* sur [0, 4o00[ qui s’annulent en 0.

1. Montrer que E est un espace vectoriel

ft)

2. Soit f € E, montrer que la fonction ¢ — — est prolongeable par continuité en 0.

w

. PourfEEetx}OonposeT(f)(x)z/z@dt.
0

Montrer que T(f) est bien définie et que T(f) € E.
4. Montrer que T est un endomorphisme de F.
. Etudier les éléments propres de T

ot

Exercice 18

On considere ’équation différentielle
(E): 2y + 2y + 2y =0

1. Montrer que (F) admet une solution développable en série entiére et préciser son rayon de
convergence.

2. Reconnaitre cette solution puis résoudre (E).
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Exercices issus d’oraux

Exercice 19
(Oral 2008)

Déterminer les fonctions f de classe C? sur R telles que
Vz € R, @)+ —f(-x)=e"+e "

On pourra introduire les fonctions ¢ : © — f(z) — f(—x) et h: z — f(z) + f(—=x)

Exercice 20
(Oral 2011)

Résoudre a I'aide de séries entieres, 'équation différentielle xy” + (x — 2)y’ — 2y = x + 2

Exercice 21
(Oral 2012)

On considere I'équation différentielle
(B): 2%y +day +(2-2%)y=0
1. Résoudre I’équation différentielle u” —u =0
Effectuer le changement de fonction y : = +— % dans (F)

Déterminer les solutions de (E) développables en série entiére au voisinage de 0.

> W

En déduire toutes les solutions. Quelles sont les solutions ayant une limite finie a droite en
07

Exercice 22
(Oral 2019)

/
2 =
Résoudre le systeme différentiel {
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Corrigés des exercices

Corrigé de I’exercice 1

1.y +cos(z)y =0

Il nous faut calculer une primitive de z — cos(z),  — sin(z) en est une. L’ensemble des
solutions de notre équation différentielle est alors

S = {CE — Ke (@) K ¢ R} = Vect (x e Si“(””))

2.y 4 ———y =
y+xln(x)y

Une primitive de x — est « — In(|In(z)|). L’ensemble des solutions de notre équation

zIn(x)
différentielle est alors

K 1
S, = Ke~n(lln@))) g eprl = K eRYS = Vect
2 {JJ'—) e , K € } x'_)|1(x)|’ € ec x»—>|1(x)|

3.y +cos®(z)y =0

Il nous faut calculer une primitive de x +— cos®(x), pour cela on va linéariser cos®(z)

cosd () = e 4 e\ 2 _ ¥4 3e +3e7 + e cos(3w) + 3 cos(a)
2 8 4
sin(3z) + 9sin(x)
12
L’ensemble des solutions de notre équation différentielle est alors

55— {x s K exp <sin(3x) 1+29 sin(m)) Ke R} — Vet <:c  exp ( sin(3x) 1+29 Sin(x))>

Un primitive de = — cos®(z) est alors =

4. (1+2%)y =22y =0
z — 1+ 2% ne sannule jamais, notre équation différentielle est donc équivalente & 1’équation

2z
2 =0
1+x2y

/

Y

1;7962 est x — —In(1 4 z?).
x

L’ensemble des solutions de notre équation différentielle est alors

Une primitive de =

Sy = {m»—)Keln(HxQ) ) KER} ={z— K(1+2%), K € R} = Vect (z — (14 2?))

1—-2z

/
5. Yy + 2

y=0.

—2x 1
Une primitive de  — est ¢ — —— — 21In(z).
x

2

L’ensemble des solutions de notre équation différentielle est alors

S5 = {x s Kewt2In(@) , K € R} = {m — KaZer , K € R} = Vect (ac — xQe%)

Corrigé de I’exercice 2
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L (1+2%)y +2y=0
La fonction z — 14z ne s’annule pas sur R, notre équation différentielle est alors équivalente
& x
/
+——y=0
Y 1+ 22 Y

1
T estae - In(1 4 2?). Les solutions de I’équation différentielle
1+ a2 2

y = 0 sont donc de la forme x — Ke™

Une primitive de x +—

1 In(1+2?)

homogene 3y’ + ez
K eR

L’ensemble des solutions de I'équation différentielle ((1 + 2%)y’ + zy = 0 sur R est donc

x
1+ 22

K
Si=¢qr— —, KeR
' { Vita? }
2. 2y — =0
Y 1+ xy
1
On se place sur | — 1, +o00[. Notre équation différentielle est équivalente & 3" — T2 Y=
x

1
U imitive de x — ——
ne primitive de x 2112

1
est & — . In(1 + z)

1
L’ensemble des solutions de I’équation différentielle 23" — ﬁy =0 sur ]| — 1, 4o00[ est alors
x

{J;»—>K\/1—|—x, KER}

1

b
1
On se place sur | — 0o, 1[. Sur cet intervalle, une primitive de  — ————= est z — 2V 1 —z
Vvi—z

L’ensemble des solutions de 1’équation différentielle ¢’ — y =0 sur | — oo, 1} est alors
x

1
J1 =
ng{l‘»—)Ke_Qvl_m, KER}

4. zy + 2%y =0
On se place sur |0, +oo[, sur cet intervalle notre équation est équivalente a 3’ + xy = 0. Une
2
x
primitive de  +— x est x — —.

L’ensemble des solutions de ’équation différentielle 2’ + %y = 0 sur ]0, +oo[ est alors

2

84:{x»—>Ke_%,KER}

5. cos(z)y’ + sin(x)y =0
On sait que ’ensemble des solutions d’une équation différentielle linéaire homogene de degré
1 est un espace vectoriel de dimension 1. Il est donc engendré par n’importe lequel de ses
éléments non-nuls. On peut remarquer que la fonction x — cos(z) est une solution de cette
équation différentielle, ainsi I’ensemble des solutions de 1’équation différentielle cos(z)y’ +
sin(x)y = 0 est
S5 = Vect(z — cos(z)) = {x — Kcos(z), K € R}

Corrigé de l’exercice 3

.1 V3
1. L’équation caractéristique associée est r> +r + 1 = 0 qui a pour solution j = 3 + zg et
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¢ 3 3
Les solutions de I’équation homogene sur R sont les fonctions hg g : t — e 2 (A cos <\2[t> + Bsin ({t) )

ot (A, B) € R?

On cherche une solution particuliere de 1’équation avec second membre en appliquant le
principe de superposition des solutions : on va rechercher une solution particuliére sous la
forme ¢t — Ae! pour le second membre e, puis rechercher une solution particuliére sous la
forme t — at® + bt + ¢ pour le second membre t2.

Finalement I’ensemble des solutions de (E;) est

S = {t —s e 3 (Acos (ft) + Bsin (?t)) + %etth2 —2t, (A,B) € RQ}

2. L’équation caractéristique associée est 72 — 2r +1 = 0 qui a pour solution double 1
Les solutions de 1'équation homogene sur R sont les fonctions hap : t — (A + Bt)e' ou
(A, B) € R
On cherche une solution particuliére de 1’équation avec second membre en appliquant le
principe de superposition des solutions : on va rechercher une solution particuliére sous la
forme t — At2e! pour le second membre e, puis rechercher une solution particuliere sous la
forme ¢t — acos(t) + bsin(t) pour le second membre cos(t) (la famille (cos,sin) est libre ce
qui permet d’identifier les coefficients.)
Finalement I’ensemble des solutions de (Es) est
¢, Loy 1 2
S =<ct— (A+tB)e +§t e’ — §smt, (A,B) eR
Corrigé de l’exercice 4
1. — On résout d’abord sur I =] — 00,0[ ou |0,1[ ou |1, 400 :
1
Sur chacun de ces intervalles I’équation est équivalente & y' + n 1)y =T
1
Pour primitiver la fonction ¢ — m on réalise une décomposition en éléments
simples :
1 1 1
vt € R\{0,1},

tt—1) t—1 ¢t
. . t—1 o .
Ainsi la fonction ¢ — In(|t]) — In(jt — 1]) = In - est une primitive de la fonction
t— —
tt—1)
On en déduit que, sur chacun de ces intervalles, les solutions de I’équation homogene

Ct
sont les fonctions de la forme ¢t — T avec C € R

On utilise la méthode de variation de la constante pour trouver une solution particuliere.
Soit k une fonction de classe C! sur I.

k(t)t

La fonction p définie sur I par p(t) = o= est solution de I’équation différentielle si et

seulement si, pour tout t € I, k/(t)t? = t, ce qui équivaut a k'(t) = T
Ainsi p est solution de (E;) si et seulement si il existe ¢ € R, telle que, pour tout ¢ € I,
k(t) =1In(|t]) + ¢
Donc p est solution de (E7) si et seulement si il existe ¢ € R, telle que, pour tout ¢ € I,
ct tln(]t])

p(t) =

t—1 t—1
— Il faut étudier les recollements éventuels en 0 et en 1;

— Solutions

A priori les solutions
sont de la forme

les quantités sont de
signe constant sur
les intervalles consi-
dérés donc on peut
faire rentrer le signe
dans la constante c.
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Soit (61, Ca, 63) S RS et

et n tIn(]t])

it <0
T
cot tin(|t .
=4 t €l0,1
UV "
cst tIn(|t .
st ) Gs
t—1+ P sit >

Quels que soient (¢, c¢2,c¢3) on a tlir% p(t) = 0, toutes les solutions se recollent bien en 0
—

de maniere continue.

Regardons maintenant si ce recollement est de classe C?.

Pour ¢ €]0,1[ on a
- 7ln(‘t|)+t762 — ].

(t—1)°

Quel que soit ¢z on a toujours lim p'(t) = +o0, ainsi on ne pourra jamais faire de
t—0+t

p'(t)

recollement C' en 0.

Etudions la possibilité d’un recollement en 1.

In(¢
On sait que lim & =1, ainsi lim p(t) = 1 si co =0 et £oo si c2 # 0, de méme en
t—1t—1 t—1—
1.

Il n’y a alors de recollement continu que si c; = c3 = 0.

Pour t €]0, 1[U]1, +o0[ on a alors

jon . —In(t)+t—1
p (t) = (t _ 1)2
— (-1 = S ot —1)?) + -1
151 (t —1)°
St o
1
12

La fonction p prolongée par continuité en 1 est continue et sa dérivée admet une li-
mite finie en 1, le théoréme de la limite de la dérivée nous permet de conclure que ce
prolongement est de classe C' sur |0, +-o0l.

t+1 3+ 2!
2. — Sur I =R} ou R Péquation est équivalente & y' + Et i_ Y= ej_—i

et +1 _e%—I—e_% _Ch(%)
etfl _e%—e7% _Sh(%)

t

Pour t #0 on a

1
Une primitive de la fonction t — + T est ainsi la fonction ¢ — 21In (

et —

o (3)])

Les solutions de I’équation homogene sont ainsi les fonctions de la forme ¢ — ( (
sh

)’

N+

Cet
(e —1)*

Par la méthode de variation de la constante on trouve que les solutions de 1’équation
(C+3e7t +2¢t + t)et

(e —1)°

avec C' € R qui peuvent se réécrire sous la forme ¢t —

avec second membre sur I sont les fonctions de la forme ¢t ——

avec C' € R.
— Etudions maintenant 1’éventuel recollement en 0.
(C +3e7t + 2¢t + t)et

SoitCeRet f:t—
d @1y
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On a par développement limité

(C + 3e7t + 2¢t + t)et C+5+25—O

= 1
(et — 1)2 t—0  t2 12 +ol)
Ainsi il n’est possible de faire un recollement continu des solutions en 0 que si C = —5.
Prenons donc C' = —5 et regardons si notre prolongement par continuité en 0 est de
classe C*.
Pourt#0on a
et ((2—t)et —t—2
O et et k)
@ —1)
t £ 3
Or (2—1t)e _t_2tf>0 _E+O(t ), d’ou
, 1x -t 1 1
Pl v Lo

t—0 t3 t»0 6 t=>0 6

La fonction f prolongée par continuité en 0 est continue et sa dérivée admet une li-
mite finie en 0, le théoreme de la limite de la dérivée nous permet de conclure que ce
prolongement est de classe C! sur R.

Corrigé de ’exercice 5
C’est une équation différentielle linéaire, que 'on résout séparément sur R’} et R*

— Sur R, I'équation est équivalente a zy —y = x°.

Les solutions de 1’équation homogene associées sont de la forme x — Kz, ou K € R. Par
variation de la constante, on obtient les solutions de I’équation avec second membre qui sont
de la forme 2 — Kz + 2? avec K € R.
— Sur R*, Péquation est équivalente & —zy’ —y = 2.
!/
Les solutions de 1’équation homogene associées sont de la forme z — —, o K’ € R. Par
x

variation de la constante, on obtient les solutions de I’équation avec second membre qui sont
/

delaformexH——gavecK’ER
x

— BEtude du raccordement en 0.
Ke+2z?> siz>0
Soit (K,K'YeR?et f:az—{ K/ 2

= - siz<0
- 3 S1 X

Pour que lim f(z) existe, il faut et il suffit que K’ = 0. Dans ce cas on a bien lim f(z) =
z—0~ z—0+

lim f(z) = 0. La fonction f se prolonge donc par continuité en 0.
z—0~
Regardons maintenant si ce prolongement est de classe C*.

A droite la fonction x +— Kz + 22 est de classe C' sur [0, +oc[, vaut 0 en 0 et sa dérivée vaut

K.
N .’,E2
A gauche la fonction z — e est de classe C* sur | — 0o, 0], vaut 0 en 0 et sa dérivée vaut 0.

Pour que le prolongement soit de classe C* en 0 il faut et il suffit que K = 0.

Finalement, il existe une unique solution f de (F) de classe C! sur R, il s’agit de la fonction

2

x siz>0

2
frow —% siz <0
0 siz=0
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Corrigé de I’exercice 6

Soit y une solution de I’équation différentielle. On pose z(t) = ty(t).

Comme y est de classe C? sur R, z l'est aussi.

Soit t € R, on a alors 2'(t) = y(t) + ty'(t) et 2" (¢t) = 2¢/(t) + ty" (¢).

Ainsi ty” + 2y’ — aty = 2" — az, z est ainsi solution de 1'équation 2" — az = 0.

Comme a < 0 il existe alors (A, B) € R? tel que
YVt € R, z(t) = Acos(v/—at) + Bsin(v/—at)

Ainsi

vE#£0,  y(t)=

Acos(y/—at) + Bsin(y/—at)
t

Or y est une solution de (E) sur R, elle est donc de classe C? sur R. On va donc étudier le
recollement en 0.

A At
— Au voisinage de 0, y(t) = — + Byva— — + o(t)
t—0 t 2
Si A # 0, y admet une limite infinie en 0, on ne peut donc pas la prolonger par continuité en
0. On a donc A = 0.

Pour ¢ # 0 on a alors par développement en série entiére

Bisin( \/—at Z V= 2n+1

t
y(t) = (2n+1)!

F2n+1 2n

T 1) est une fonction développable en série entiere de rayon
n

Bsin(y/—at)
4

La fonction ¢ Z
n=
infini, elle est donc de classe C*° sur R. Ainsi la fonction t +— prolongée par

continuité en 0 est de classe C*°.

On vérifie par un calcul rapide que les fonctions de la forme ¢ — prolongées par

Bsin(y/—at)
t
continuité en 0 sont bien solutions de (E).

Bsin(y/—at)
t

Finalement les solutions de (E) sont exactement les fonctions de la forme ¢ +—

prolongées par continuité en 0

Corrigé de I’exercice 7

1. Notons (H) I'équation y” — 2y’ + 5y =0
Son polynéme caractéristique est X2 —2X 45 qui a pour racines 14 2i et 1—2i. Les solutions
de (H) sont donc les fonctions de ’ensemble

Sy = {z — e* (Acos(2z) + Bsin(22)), (4, B) € R*}

2. La fonction exp : R — R est dérivable sur R et & valeurs dans R, et la fonction y : R}, — R
est dérivable sur R’ . D’aprés le théoreme de dérivation des composées, z = y o exp est
dérivable sur R. On a alors

Vo eR 2 (x) = ey (e)

On montre de méme que 2’ est dérivable, comme composée et produit de fonctions dérivables
et on obtient

Ve R 2(x) = ey(e) + ey (€)= 2 () + ()P ()

10
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3. La fonction y est solution de (€) sur R, si et seulement si
vt e RY, t2y"(t) + aty' (t) + by(t) = c(t)
Ainsi, en prenant ¢t = ¢¥ > 0 on obtient
Ve e R, (e")%y(e") + ae"y'(e7) + by(e”) = c(e”)

C’est-a-dire
Vz € R, 2"(x) + (a —1)2(x) + bz(x) = c(e”)

On en déduit que, si y est solution de (£) alors z est solution sur R de I’équation

2"+ (a—1)2" + bz =c(e”)

Réciproquement supposons que z est solution sur R de I’équation
2"+ (a—1)2 + bz = c(e”)
C’est-a-dire
VreR,  (e")%y"(e") + ae”y () + by(e”) = c(e”)

En prenant le cas x = In(¢) on a alors
vte R,  £y'(t) + aty' (t) + by(t) = c(t)

C’est-a-dire y est solution de (&) sur R,
On a ainsi montré que y était solution de (€) si et seulement si z est solution sur R de
I’équation
2"+ (a—1)2" + bz =c(e”)
4. Ici,a=—-1,b=5,onadonca—1=—2.

D’apres la question 3., la fonction y : R} — R est solution de (&) si et seulement si la
fonction z : R — R  est solution sur R de 2’/ — 22 +52 =10
z = oyle”)

On a la bonne surprise de retrouver I’équation résolue dans la partie A. On rappelle que les
solutions de (&y) sont les fonctions de la forme

x +— e” (Acos(2z) + Bsin(2z))

avec A et B des réels.

On a alors
VeeR z(z) =y(e") = vVt e RL  y(t) = z(In(t))

On en déduit que les solutions de (£;) sur R’ sont les fonctions de la forme

ts t(Acos(2In(t)) + Bsin(21In(t))) avec A, u(A, B) € R?

Corrigé de I’exercice 8

1. Sur ]0, +o0 la fonction racine carrée est de classe C* et de plus c’est une bijection de ]0, +o00[
vers )0, +00[.

Ainsi f est de classe C? sur ]0, +o0] si et seulement y est de classe C? sur ]0, +oo].

Dans ce cas on a

vt €]0, +o00], f(t) = —=~ et ') = yuif) - y;i\‘/[?

Ainsi, pour t €]0, +oco[ on a

YV =2Vif(t) ety (VI = atf" () +2f (1)

11 Bastien Marmeth
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Dot
V" (V) =y (VE) +4t3y(VE) = V(AL (1) + 2f'(1)) = 2VEf (1) + 442 f (1)
= 4> (f"(t) + f(2))

On en déduit que y est solution de (F) si et seulement si f est solution de 1’équation diffé-
rentielle f” + f = 0.

2. On a f” + f = 0 si et seulement si il existe (,B) € R? tel que, pour tout ¢ €]0,4o00],
f(t) = Acos(t) + Bsin(t).
Ainsi y est solution de (E) si et seulement si il existe (4, B) € R? tel que, pour tout ¢ €]0, +o0],
y(Vt) = Acos(t) + Bsin(t).

Par bijectivité de la fonction racine carrée sur |0, +o0o[ on en déduit que y est solution de (E)
si et seulement si il existe (A, B) € R? tel que, pour tout z €]0, +oo[, y(z) = Acos(z?) +
Bsin(z?).
3. Soit (A,B) €R*et y : ]—o00,0] — R
x —  Acos(z?) + Bsin(z?)

On a alors zy” (x) — v/ (z) + 423y(z) = 0.
Ainsi, en notant .~ Pensemble des solutions de (E) sur | — oo, 0] on a
Vect(z + cos(x?),z ~ sin(z?)) € 7~

Or le théoreme de Cauchy-Lipschitz nous assure que .~ est une espace vectoriel de dimension
2. Puisque la famille (z +— cos(z?), z +— sin(z?)) est libre on en déduit que

= = Vect(x + cos(z?), z + sin(z?))

4. Toutes les solutions précédentes se recollent bien de maniére C* en 0, ainsi, I'ensemble des
solutions de (E) sur R est Vect(z +— cos(x?), 2z — sin(z?)).

Corrigé de I’exercice 9

1. 1l s’agit d’une équation d’Euler (c.f. Exercice 7), on sait que y est solution de ’équation (E)
sur ]0, +oo[ si et seulement si la fonction z : z +— y(e®) est solution de (E') : 2" +32' +22 =1

Cette équation & la fonction constante en 1/2 comme solution particuliere et I’équation
caractéristique associée a I'équation homogene liée & (E’) a pour racines —1 et —2. Ainsi, les
solutions de (E’) sont de la forme :

1
Z:1T 3 + Cre ™ 4 Coe™2®

ot C; et Cy sont des constantes réelles. Finalement, les solutions de (E) sur R’ sont de la
forme :

ou C; et Cy sont des constantes réelles.
2. Soit y une solution de (E) sur | — oo, 0] on a ainsi

VE<0,  £y'(t) + 4ty (t) +2y(t) =1

D’ou, en prenant t = —s
Vs > 0, s2y (—s) — dsy'(—s) + 2y(—s) =1
Soit w : s + y(—s), on a alors w'(s) = —y'(—s) et w”(s) =y’ (—s). Ainsi
Vs > 0, s2w” (s) + 4sw'(s) 4+ 2w(s) = 1
Il existe donc D; et Do deux constantes réelles telles que
1

Vs >0, w(s) = 3 + Die™® + Doe™%®

D’ou

1
Vit < 0, y(t) = 5 + Dlet =+ D2€‘2t
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Corrigé de ’exercice 10

1. On pose, pour u €]0, 7|, z(u) = y(cosu), de sorte que y(t) = z(arccost). Si y est de classe
C?, alors z aussi par composition.

Pour u €]0,7[on a 2’ (u) = — sin(u)y’(cos(u)) et 2" (u) = — cos(u)y’(cos(u))+sin? (u)y” (cos(u)).
Comme arccos est une bijection de | — 1, 1] sur ]0, 7[, y est solution de (E) sur | — 1,1] si et
seulement si z est solution de z” + z = 0 sur ]0, 7[. On en déduit qu’il existe (A, B) € R? tel
que,

Yu €]0, 7, z(u) = Acos(u) + Bsin(u)

On a de plus z(u) = Acos(u) + By/1 — cos?(u) car u €]0,7[ donc sin(u) > 0

Ainsi, pour tout t €] — 1,1[, y(t) = At + B\/1 — t2.

2. On pose, pour u €]0, +o0o, z(u) = y(ch(u)), de sorte que y(t) = z(argch(t)). Si y est de classe
C?, alors z aussi par composition.
Pour u > 0 on a alors 2’(u) = sh(u)y’(ch(u)) et 2" (u) = ch(u)y’(ch(u)) 4 sh?(u)y” (ch(u)).
Comme argch est une bijection de |1, +o0o[ sur |0, +o00[, alors y est solution de (E) sur |1, +00]

si et seulement si z est solution de 2" — 2z = 0 sur |0, +o0].

On en déduit qu'il existe (A, B) € R? tel que

Yu > 0, z(u) = Ach(u) + Bsh(u)

Puisque u > 0 on a donc sh(u) > 0, d’ott z(u) = Ach(u) + By/ch®(u) — 1

Ainsi, pour tout ¢ > 1, y(t) = At + B\/t2 — 1.

3. La solution générale trouvée sur lintervalle |1, +oo[ est aussi définie et de classe C' sur
| — 00, —1], et elle vérifie ’équation sur cet intervalle. Comme on sait que les solutions sur
|—o00, —1[ forment un sous espace vectoriel de dimension 2, cela nous donne toutes les solutions
sur cet intervalle.

4. Soit (A,B) €R*et y : |—-1,1] — R
t = At +ByV1-—t2
Bt
Pour t €] — 1,1[ on a y'(t) = A — —. Ainsi y’ admet une limite finie en 1 et/ou —1 si

V1 —¢2

et seulement si B = 0.

De méme les fonctions ¢t — At +B+/t2 — 1 ne peuvent étre prolongé de maniére C* en 1 et/ou
—1 quesi B=0.
Ainsi les seules solutions de (E)sur R sont les fonctions de la forme ¢ — At, avecA € R.

5. Si on cherche une solution de I’équation (E) sous forme polynomiale on trouve que la fonction
t — t est solution. On cherche ensuite les solutions de (E) sous la forme t — K (t)t.

Une telle fonction est solution de (E) si et seulement si K vérifie 'équation (t —t3) K" + (2 —

3K = 0.
Ainsi K’ doit étre une solution de I’équation différentielle linéaire du premier ordre (t—t3)2' 4
(2 —3t%)z = 0.
) . L. o, 3t2—2
Plagons nous sur |1, +ool, cette équation est équivalente & 2’ + yER— z=
Une décomposition en éléments simples nous donne
3t2—-2 1 L2, !
B—t  20t+1) t 2(t-1)
32 —
Ainsi, les solutions de 2’ + S a— z = 0 sont les fonctions de la forme
In(t+1 In(t -1 A
t+— Aexp (—H(H—an(t)— al )) =
2 2vt2 — 1

Primitivons maintenant ces fonctions.
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Pour tg >1ett>1o0na

1
changement de variable u = —
s

I
o
<

[ ==,
R t -
to 82vVs%2 — 1 L 124

Ainsi les primitives des fonctions de la forme t — L sont les fonctions de la forme
2Vt -1
2 —1
t
En d’autres termes K vérifie (t—t3) K" +(2—3t%) K’ = 0 si et seulement si il existe (A4, B) € R?

Viz -1
t

t— A

+ B avec (A, B) € R%

telque K :t— A + B.

On en déduit que les solutions de (F) sur |1,4o0[ sont les fonctions de la forme t —
AV/12 — 1+ Bt ce qui est bien le résultat obtenu plus tot.

On procede mutatis mutandis sur | — oo, —1[ et | — 1, 1[.

Corrigé de I’exercice 11

Soit y une solution de (E) et z : t +— t?y(t). z est alors de classe C* sur ]0, +o00[ et on a
Vi > 0, 2 (t) = 2ty(t) + 29/ (t), 2 (t) = 2y(t) + 4ty (t) + t2y" (1)

Ainsi t2y"(t) 4+ 4ty/(t) + (2 — tD)y(t) = 2(t) — 2(t), z est donc une solution de 1’équation
différentielle 2"/ — z = 1.

L’ensemble des solutions de cette équation est

S ={t— Ae' + Be™' — 1, (A, B) € R?}

Aet + Be7t -1
t2 '
Réciproquement on vérifie sans difficulté que ces fonctions sont bien des solutions de (E) sur
10, 4+o0].

Finalement ’ensemble des solutions de (E) sur |0, 4+o00[ est

Ainsi, il existe (A, B) € R? tel que y : t —

Aet + Be7t —1

- , (4, B) e R*}

I ={t—

Corrigé de ’exercice 12

1. Soit @« € Ret f:z+— e*. On a alors, pour x € R,
(L +a)f"(x) = f'(x) —2f(z) = (® —a+z(a® —1)) e

La famille (z — 1,z — z) étant libre on en déduit que f est solution de (E) si et seulement
sia=1.

14
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2. On cherche les solutions de (E) sous la forme f : 2 — K(x)e®. Une telle fonction est solution
de (F) si et seulement si K vérifie

vt > —1, ef(t+ 1)K"(t) +e' (2t + 1)K'(t) =0

2t+1
t+1”
Les solutions de (E) sont les fonctions de la forme ¢ — Ae™2+ 0D — A(¢ 4 1) 2,

=0.

Ainsi f est solution de (E) si et seulement si K’ est solution de (E) : 3 +

Une telle fonction se primitive aisément par intégration par parties.
Les fonctions K telles que, pour t > —1, e'(t + 1) K" (t) + €' (2t + 1) K'(t) = 0 sont alors les

%e*% avec (A, B) € R?

On en déduit que ’ensemble des solutions de (E) est

fonctions de la forme K : t — B —

S ={t+s Be' + (2t +3)Ae™" | (A, B) € R?*}

Corrigé de ’exercice 13

1. On a, pour = € R,
14 222

ﬂ+x%W@0+MW@O+1+x2M@:0
Ainsi h n’est pas solution de (F) mais est solution de 1’équation différentielle homogene
associée.
K(z)

2. On cherche les solutions de (E) sous la forme f: 2z +— ———.
&) V1+ a2

Une telle fonction f est solution de (E) si et seulement si K est solution de (22 +1)y” +2zy’ =
1 ou encore si et seulement si K’ est solution de (2% + 1)y’ + 2zy = 1.

A
Les solutions de I’équation homogene associé sont de la forme z +— T2 avec A € R.
T
Par la méthode de variation de la constante on en déduit que les solutions de I’équation

(2% + 1)y’ + 22y = 1 sont les fonctions de la forme z — avec A € R.

1+x2+m2+1

Par primitivation K est solution de (2% +1)y” +2xy’ = 1 si et seulement il existe (4, B) € R?

tel que
In(1 + 22
Vo € R, K(x) = Aarctan(z) + B + w
Finalement I’ensemble des solutions de (E) est
Aarctan(z) B In(1 + 2?%) 9 }
S =1z + + , (A,B)eR
{ V14 22 Vi+22 2v1+22 ( )

Corrigé de ’exercice 14

1 1
— Posons A = < 1 1 )

xa(X) = (X = V2)(X + V/2). xa est scindé & racines simples, donc A est diagonalisable.

. 1 1
On obtient £ 5 = Vect ((\/5_1>) et Eﬁ—Vect(<_\/§_l>).

soir= (5 A Jan=( 0

On a alors D = P~*AP. Soit x,y des fonctions dérivables sur R

! /
Le systeme différentiel <;) =A <"§> équivaut au systeme P! (i) — pp-! (i)
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On pose <I1> =p! <I>
hn Y
=21,

!
x
Notre systeme est alors équivalent a /1
1 = —\/53/1

Un couple de fonction (x1,y1) est ainsi solution s’il existe (a,b) € R?, tel que, pour tout
tER, 21(t) = aeV? et y; (t) = be~ V2.

or (3) =7 ()

Ainsi (5) est solution du systéme si et seulement il existe (a,b) € R? tel que, pour tout

— Autre méthode

t R, z(t) = aeV? + be™ V2 et y(t) = a(vV2 — 1)eV? — b(v2 + 1)e V2 Cette méthode ne
fonctionne que pour

— On va voir une autre méthode pour résoudre les systemes linéaires 2 x 2 a coeflicients !
les systémes 2 x 2

constants. ;
mais a I’avantage
/ sa R
. . r =zxz+vy d’étre plus rapide
Soit (z,y) solution de { b et surtout au pro-
vo= Y gramime.
On a alors
x// — x/ + y/
=2’ +z—y
=2 +z— (' — 1)
=2z

 est solution de I'équation z” = 2z, on en déduit qu'il existe (a,b) € R? tel que
Vt € R?, x(t) = aeV? 4 pe~ V2
On a ensuite y = 2’ — z, d’oul
Vt € R?, y(t) = a(v/2 — 1)eVZ —b(v/2 + 1)e v

— On pourrait reprendre la méthode matricielle mais on va essayer de résoudre le systéme en
restant dans les limites du programme

L’équation 3 = 2y admet pour solution les fonctions de la forme y : t — Ae?t, ot A € R.

L’équation 2’ = x — y devient alors 2’ — xz = —Ae*. 1l s’agit d’une équation différentielle
linéaire d’ordre 1 qui admet comme solution les fonctions de la forme ¢t — Be! — Ae* on
(A, B) € R?.

Finalement x et y sont solutions de ce systéme si et seulement si il existe (A4, B) € R? tel que

vt € R, x(t) = Be' — Ae* et y(t) = Ae*

Corrigé de I’exercice 15

Soit y une solution de I’équation différentielle linéaire.

y(t) 0 10
On pose X (t) = | ¥/(t) |, on aalors X'(t) = AX(t)avec A= 0 0 1
(1) 31 3

Par le calcul on a x4 = X —3X2 — X + 3. 1 est racine évidente de ce polynoéme ce qui nous
permet de la factoriser : x4 = (X — 1)(X +1)(X — 3)

A est une matrice carrée de taille 3 qui admet 3 valeurs propres distinctes, elle est donc diago-
nalisable

1 0 0
Soit P € GL3(R) tel que A=P |0 —1 0] P!
0 0 3
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1 y(t) Ty =1
En posant [ 2o | = P71 | 4/(t) | on a alors le systeme xh = —xo
x3 y"(t) xh =33
x1(t) ae’
1l existe donc (a,b,c) € R® tel que, pour t € R, | zo(t) | = [ be™
x3(t) ce®
y(t) ac’
On aalors | y/'(t) | = P [ be™"
y//(t) CeSt

y est ainsi une combinaison linéaire des fonctions ¢t — €', t — et et t — €3t

En d’autres termes, il existe (A4, B,C) € R? tel que

YVt € R, y(t) = Ae' + Be™! + Ce?!

Corrigé de ’exercice 16

1. Soit (P,Q) € E? et a € R, on a alors
f(P+aQ) = (X+1)(P+aQ) +(P+aQ) = (X+1)P'+P+a (X + 1)Q' + Q) = f(P)+af(Q)

f est donc linéaire.

De plus deg(f(P)) < max(deg((X +1)P’, deg(P)) < max(1+deg(P)—1,deg(P)) < n. Ainsi
f(P)€E.

Finalement f est bien un endomorphisme de E.

2. Ona f(1) = 1 et, pour k € [1,n], f(X*) = (k+1)X"* + kX"~ La matrice de f dans la base
canonique est donc

1 1 0 0
0 2 2
Matg,,, (f) = 3
: . .on
0 -+« oo i 0 n4+1

Cette matrice est triangulaire donc ses valeurs propres (qui sont aussi celles de f) sont ses
coefficients diagonaux. Ainsi Sp(f) = [1,n + 1].

f est un endomorphisme d’un espace de dimension n 4+ 1 qui admet n 4+ 1 valeurs propres
distinctes, il est donc diagonalisable.

3. Soit k € [1,n + 1], un polyndéme P est un vecteur propre de f pour la valeur propre k si et
seulement il est solution de 1’équation différentielle (z + 1)y’ +y = ky.

1-k
Sur | — 1, 4+oo[ cette équation est équivalente a 3 + ﬁy = 0 qui a pour ensemble de
x
solutions {z — A(z 4+ 1)*1, AcR}
Un vecteur propre de f pour la valeur propre doit alors coincider avec une fonction poly-
nomiale de la forme z — A(z 4+ 1)*7! sur | — 1, +00[. Comme cet ensemble est infini cela
nous indique que les seuls vecteurs propres possibles de f pour la valeur propre k sont les
polynomes de Vect((X + 1)*71).
On vérifie aisément que ces polynémes sont bien des vecteurs propres de f.

Finalement, pour tout k € [1,n + 1] on a Ej(f) = Vect((X +1)F1)

Corrigé de ’exercice 17

— Polynémes

Deux polynoémes
qui coincident sur
un ensemble infini
sont égaux partout
car leur différence
admet une infinité
de racines.
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1. Soit ¢ I'application définie sur C*([0, +oc[) par ¢(f) = f(0).

@ est linéaire et E = Ker(ip) ainsi E est un sous-espace vectoriel de C*([0, +-oc[) et donc un
espace vectoriel.
f@) _ f(#) = f(0)

. _JW) =7 /
2. 801thE7p0urt7é00na—t ro— mf(o)-

t
La fonction ¢ — & est ainsi prolongeable par continuité en 0.
t
t
3. La fonction t — & est ainsi prolongeable par continuité en 0. L’intégrale définissant la

fonction T'(f) est ainsi faussement impropre, T'(f) est donc bien définie.

f®)

De plus T'(f) est une primitive de la fonction continue t — 0 T(f) est donc une fonction

de classe C'; On a également T'(f)(0) = 0. Ainsi T(f) € E.
4. Tl ne nous reste plus qu’a montrer la linéarité.

Soit (f,g) € E? et a € R.
Pour >0 on a

T(tag)e) = [ 000 g [TIOL000 gy IO gp10 [0 41— 1(g) @) pat0)e)

Ainsi T est linéaire. Comme on sait que, pour toute fonction f € e on a T(f) € E on en
déduit que T est un endomorphisme de FE.
5. Soit A € R, on cherche s’il existe des fonctions f € E telles que T'(f) = Af.

On va procéder par analyse-synthese.
Analyse :
Soit f € E telle que T'(f) = Af.
1
On a alors T(f) = Af, i.e. A\f' = Ef.
Si A = 0 alors f = 0. Un vecteur propre étant nécessairement non-nul on en déduit que 0

n’est pas une valeur propre de f.

1
Pour A # 0, f est une solution de I’équation différentielle f' — Ef = 0 sur ]0, +oo.

L’ensemble des solutions de cette équation sur |0, +o0[ est {t — Atx , a€ R}

Si A est négatif aucune de ces fonctions a part la fonction nulle n’est prolongeable par conti-
nuité en 0. Puisque f € E on a donc f = 0. La encore on en déduit que A n’est pas une
valeur propre de f.

1
Si A > 1 alors — < 1, les fonctions ¢ +— At> avec A = 0 se prolonge par continuité en 0 mais

A

ce prolongement n’est pas de classe C! en 0. Puisque f € F on a donc f = 0. La encore on
en déduit que A n’est pas une valeur propre de f.

Synthese :

Si A €]0,1] alors les fonctions ¢ — At> avec A # 0 se prolongent par continuité en 0 et le
prolongement est de classe C!, ce sont bien des éléments de E.

Par calcul on a, pour x > 0,

T 1 T -
/ At dt:/ At = [AAtﬂ = Mz
o ¢ 0 0

Ainsi, les fonctions t — At avec A = 0 sont bien des vecteurs propres de T pour la valeur
propre .

Finalement Sp(T") =0, 1] et, pour A €]0,1] on a Ex(T) = Vect (ac — :U%>.

Corrigé de I’exercice 18
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+o00
1. On cherche une solution de (E) développable en série entiere de la forme z — Z anx” de
n=0
rayon de convergence strictement positif.
+oo
Si y est développable en série entiere de la forme x +— Z an,x" de rayon R > 0 alors, pour
n=0
r €] —R,R[on a
400 “+o0 +oo
xy" (x) + 2y (x) + 2y(z) = Z n(n —Da,z™ ' 42 Z napz" "t + Z anz" !
n=2 n=1 n=0
+oo +oo —+oo
— Z n(n — 1a,z™ ' 4 2a; + 2 Z na,z" !+ Z Up_ox™ !
n=2 n=2 n=2

“+o0
=2a; + Z (n(n — Day, + 2na, + a,—2) "1
n=2

—+o00
=2a; + Z (n(n+Dap + a,_2)x™ !
n=2

Par unicité du développement en série entiére y est solution de (E) si et seulement si a; = 0

-1
et, pour tout n > 0, a = ay.
P " )t
On en déduit que, pour tout entier n impair on a a,, =0
-1
Si n est pair il existe alors p € N tel que n = 2p, d’oul a = q9,.
p X p q D, 2p+2 (2p+ 2)(2p+ 3) 2p

On peut alors montrer par une récurrence aisée (laissée au lecteur) que, pour p € N on a

(=1”

“2r = op 1+ 1)
Ainsi, pour x €] — R,R[ on a
+oo
(=D 5
v@) =D oot
= @2p+1)!

Le rayon de convergence de cette série entiére est +oo d’apres le critere de D’Alembert pour
les séries numériques.
2. On reconnait dans la question précédente le développement en série entiere de la fonction
sin(z)
prant
On résout désormais (F) par la méthode de variation de la constante : on va chercher une

sin(z)

avec K une fonction de classe C? sur R.

solution de (E) sous la forme fz — K(x)
Une telle fonction est solution de (E) si et seulement si
Vo € R, sin(z) K" (x) + 2 cos(z)K'(z) = 0

Ainsi f est solution de (E) si et seulement si K’ est solution de sin(z)y’ + 2 cos(z)y = 0.
. A i . 4 2cos(z)

Sur tout intervalle de la forme |km, (k+1)7[ cette équation est équivalente & y' +——==
s

in(z)

L’ensemble des solutions de cette équation est {x +— Aexp (—2In(|sin(z)|) , a € R}, ie.

A
— R
{xb—> sin(@)? ’ ac }

Pour z €]km, (k+ 1)7] on a

y=0.

1 1 1 tan(x)

sin(z)2  cos(z)?tan(z)?  tan(z)2

Ainsi f est solution de (E) sur |kx, (k 4 1)7[ si et seulement si il existe (4, B) € R? tel que

Vo €lkr, (k+ Dn|  K(z) = ta;é) +B
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D’oul f est solution de (E) sur ]km, (k + 1)7[ si et seulement si il existe (A, B) € R? tel que

vz ek, (k4 )r[  f(z) = AC(;S(”““) + B

sin(x)

Une telle fonction se prolonge par continuité en tout réel de la forme k7 avec k € Z\{0} et
le prolongement est de classe C*.

Par contre elle se prolonge par continuité en 0 si et seulement si A = 0.
Finalement I’ensemble des solutions de (E) sur ]0, +o00[ ou | — 00, 0] est

{33 oy Acos@) | psinl@) -y gy e RQ}

X €T

mais ’ensemble des solutions de (E) sur R est

{x LG R}
xr

Corrigé de I’exercice 19
On va procéder par analyse-synthese
Analyse :

Soit f une fonction de classe C2 sur R telles que

Vr € R, f"(x) + f(—l') —e® fe % idée
L’idée est de décom-
Soit g :x— f(x) — f(—x) et h:z— f(z)+ f(—2) poser f suivant sa

partie paire et sa

On a alors, pour z € R . .
partie impaire.

g'() = f'(@)+f (—2) ") = @)= f"(=2) W)= f(2)=f(-2) () =1"(@)+f(-2)

D’ou

f(@) + f(-)
On a ainsi, pour tout x € R

B h 7 _
(@) +h) | ") g _ .
2 2
W'(—z)+h(=z)  g¢"(-z) —g(-2)
+
2 2
Or, g et g” sont impaires et h et h” sont paires, ainsi pour tout z € R

h'(x) + hz)  g"(z) - g(x)
2 2

D’ou, en —zx,

Par addition et soustraction de ces deux équations on en déduit que, pour tout z € R

' () + h(x) = 2e” + 27, et g (x) —g(z) =0

La premiére équation a pour ensemble de solutions {z — e®+e~*+ A cos(z)+Bsin(z) , (A, B) €
R?} et la seconde a pour ensemble de solutions {z — C ch(x) + Dsh(z) , (C,D) € R?}.

Puisque h est paire et g est impaire alors il existe (A, D) € R? tel que

Vz € R, h(z) =e® + e % + Acos(x) et g(z) = Dsh(x)

tyg

h
D’ou, puisque f = , il existe donc (a,b) € R? tel que

Vr € R, f(z) = ch(x) + acos(x) + bsh(x)
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Synthese :
Soit (a,b) € R? et f : &+ ch(z) + acos(z) + bsh(z). f est bien de classe C? sur R
De plus, on a, pour = € R,
" (x) + f(—x) = ch(z) — acos(x) + bsh(z) + ch(—z) + acos(—z) + bsh(—x)
= ch(z) — acos(z) + bsh(x) + ch(x) 4+ acos(x) — bsh(x)
= 2ch(x)

Finalement les fonctions f de classe C2 sur R telles que
vV € R, ['(x)— f(—z)=e"4+e*

sont exactement les fonctions de la forme z — ch(x) + acos(z) 4 bsh(z) avec (a,b) € R%

Corrigé de I’exercice 20

+oo
On cherche une solution de (E) développable en série entiére de la forme z — Z anx™ de rayon
n=0
de convergence strictement positif.
—+oo
Si y est développable en série entiere de la forme z — Z anz" de rayon R > 0 alors, pour
n=0
x €] — R,R[ on a
400 “+o00 “+o0 400
zy’ () + (z — 2)y (z) — 2y(z) = Z n(n — Da,z" ' + Z na,x™ — 2 Z na,r" ' —2 Z anx"
n=2 n=1 n=1 n=0

“+oo +oo +oo +oo
= Z n(n+ Dap412™ + Z nap,x” — 2 Z(n + Dap12™ —2 Z anpx”™
n=1 n=1 n=0 n=0

“+o0

— Z (n(n+ Dapt1 + nap, — 2(n+ Daps1 — 2a,) 2™ — 2a1 — 2a9
n=1
+o0o

= Z(n —2)((n+ Dapy1 + an) 2™ — 2a1 — 2a9

n=1

+oo
= Z(n = 2)((n+ Daps1 + an) 2™ — (2a2 + a1)x — 2a1 — 2ag
n=2

Par unicité du développement en série entiere, y est solution de I’équation différentielle si et
seulement si
—2(a1 + ao) =2
—(2a2+a)=1
Vn > 2, (n—=2)((n+ Dany1 +an)

D’ou si et seulement

a; = —1-— ag
1=
2= 5 X
Vn > 3, an+1:n+1an
s . : 6(—1)"?
On montre aisément par récurrence qu’alors, pour tout n > 3, a,, = —— a3
n!
On a ainsi, pour = €] — R, R|
+oo
x (="
= — — — — |
y(x) x—l—ao(l a:+2> 6(132 !
n=3
x _z x? x o
= —x+ag (1—1‘—&—5) —6as | e —1—|—x—? = —x + (ag + 6a3) (1—x—|—§) — bage
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Ainsi, si y est une solution développable en série entiére alors il existe (a,b) € R? tel que

Vr € R,

y(x) —x+a(1—x+g>+be*x

Réciproquement on vérifie par un calcul rapide que les fonctions de cette forme sont bien des

solutions de ’équation différentielle.

D’apres le théoreme de Cauchy-Lipschitz, I’ensemble des solutions de cette équation différen-

tielle est une ensemble de la forme {z +— y,(z) + ayi(x) + byz(x) , (a,b) € R?} ot y,

est une

solution de I’équation et (y1,y2) une famille libre de solutions de I’équation homogene associée.

La famille (m»—>1—x+g,x»—>e*

tion différentielle.

””) étant libre, on a bien trouvé toutes les solutions de I’équa-

Corrigé de ’exercice 21

1. L’équation différentielle u” — u = 0 a pour ensemble des solutions

% = {x+ Ach(z) + Bsh(z) , (A, B) € R?}

2. Soit y une fonction de classe C* sur R et z : z — 2%y(x).
z est alors de classe C% sur R et on a, pour z € R,
d(z) = 2zy(e) + 2%y’ (),  2"(2) = 2y(2) + day'(x) + 2°y" (2)

Ainsi 2%y (z) + 4oy’ () + (2 — 2?)y(z) = 2" (z) — 2(x).

On en déduit que y est une solution de (E) si et seulement si z est donc une solution de

I'équation différentielle 2" — z = 0.

Ainsi, y est une solution de (E) sur ]0,+oo[ ou sur | —
Ach(x) + Bsh(x)

(A,B) € R? tel que y : x +— .

+oo

00,0[ si et seulement si il existe

3. On cherche une solution de (E) développable en série entiere de la forme z — Z apx” de

n=0
rayon de convergence strictement positif.

—+oo
A'E an$n+2

+oo
Si y est développable en série entiere de la forme x — Z anz" de rayon R > 0 alors, pour
n=0
€]—R,R[ona
+oo
2y (x) + day (z) + (2 — 2%)y(z) = Z n(n —Da,z™ +4 Z na,x" + 2 Z anx
n=2 n=0

= Z n(n — Dayz™ + 4 Z napx” + 2 Z anx™
— n=1 n=0
= Z

+oo

= Z (n*+ 3n+2)a,

n=2

— an,g) " + +6a1x + 2ag

n=0

“+o0
- E Ap_ox"
n=2

(n = 1)an + 4nay, + 2a, — an—2) ™ + 6a12 + 2ag

Par unicité du développement en série entiére, y est alors solution de (FE) si et seulement si

ap =0, a; = 0 et, pour tout n > 2, a,_2 = (n> —3n+2)a, = (n+ 1)(n + 2)a,.
Ap—2

(n+1(n+2)

Pour n > 2 on a alors a,, =

ay

On en déduit par récurrence que pour p € N, agpy1 = m = 0 et, pour
ao

a = ———=

T (2p+2)!

p = 0,

— Inutile?

La question précé-
dente nous permet
de répondre puis-
qu’on prouve assez
facilement que la
seule solution de (F)
sur ]0, +o0[ qui se
prolonge par conti-

4 nuité en 0 est la

fonction nulle. On
peut supposer que
I'examinateur vou-
lait voir si les candi-
dats savaient cher-
cher les solutions dé-
veloppables en série
entiere d’une équa-
tion différentielle.
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Ainsi la seule solution de (E) développable en série entiére au voisinage de 0 est la fonction

nulle.

4. Finalement y est une solution de (E) sur ]0, +oo[ ou sur | — oo, 0] si et seulement si il existe

Ach(x) + Bsh(z)
2
Ach(z) + Bsh(z) A+ Bz +o(x)

x2 :v:O x2

(A,B) e R? tel que y : = —

Si (A, B) € R? alors

Une telle fonction admet une limite finie en 0 si et seulement si A = B = 0. La seule solution

admettant une limite finie & droite en 0 est la fonction nulle.

Corrigé de ’exercice 22
Soit (z,y) un couple de fonctions solution du systeme.

On a alors

2 =T —y' =T —x—5y=72"—2—5(Tx —2') =72’ —x — 35z + 5z’ = 122" — 36z

Puisque z vérifie 2 — 122 4 36z alors il existe (4, B) € R? tel que
vVt €R, x(t) = (A+ Bt)e"
On a alors y = 7z — 2/, d’ou

VteR, y(t)=(A— B+ Bt)e®

Réciproquement, s’il existe (A4, B) € R? tel que

VteR, x(t)=(A+Bt)e®  y(t)=(A— B+ Bt)e

Alors on a bien y = 7Tz — 2’ et, pour t € R

y'(t) = (6A — 5B + 6Bt)e’" = x(t) + 5y(t)

Finalement, 'ensemble des solutions du systéme est ’ensemble des fonctions x : ¢+ (A+ Bt)e5

et y:t+ (A— B+ Bt)e® avec (A, B) € R”.
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