
Lycée La Martinière Monplaisir PT

TD17 – Équations différentielles

Exercice 1 ⋆

Résoudre les équations différentielles suivantes

1. y′ + cos(x)y = 0

2. y′ +
1

x ln(x)
y = 0

3. y′ + cos3(x)y = 0

4. (1 + x2)y′ − 2xy = 0

5. y′ +
1− 2x

x2
y = 0.

Exercice 2 ⋆

Résoudre les équations homogènes suivantes sur un intervalle de R que l’on précisera.

1. (1 + x2)y′ + xy = 0

2. 2y′ − 1

1 + x
y = 0

3. y′ − 1√
1− x

y = 0

4. xy′ + x2y = 0

5. cos(x)y′ + sin(x)y = 0

Exercice 3 ⋆

Résoudre les équations différentielles suivantes :

(E1) y′′ + y′ + y = t2 + et

(E2) y′′ − 2y′ + y = et + cos(t)

Exercice 4 ⋆⋆

Résoudre les équations différentielles suivantes, en étudiant les éventuels raccordements :

(E1) t(t− 1)y′ + y = t

(E2) (et − 1)y′ + (et + 1)y = 3 + 2et

Exercice 5 ⋆⋆

Résoudre |x|y′ − y = x2.

Exercice 6 ⋆⋆

Soit a un réel strictement négatif. Résoudre (E) : ty′′ + 2y′ − aty = 0 en posant z(t) = ty(t).

Exercice 7 ⋆⋆

Soit a et b deux nombres réels et c une fonction continue, le but de cet exercice est de résoudre
l’équation différentielle suivante, appelée équation d’Euler :

t2y′′ + aty′ + by = c(t) (E)

Elle ne fait pas partie des équations que le cours nous apprend à résoudre. Via un changement de
fonction inconnue on va se ramener à une équation que l’on sait traiter

1. Déterminer l’ensemble des solutions de l’équation y′′ − 2y′ + 5y = 0
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2. Soit y : R∗
+ → R
t 7→ y(t)

une fonction deux fois dérivable sur R∗
+. On définit z : R → R

x 7→ y(ex)
.

Justifier que z est deux fois dérivable sur R et calculer z′ et z′′ en fonction de y et de ses
dérivées.

3. Montrer que y est solution sur R∗
+ de (E) si et seulement si z est solution sur R d’une équation

différentielle linéaire d’ordre 2 que l’on précisera.
4. Résoudre l’équation d’Euler

t2y′′ − ty′ + 5y = 0 (E1)

Exercice 8 ⋆⋆

On considère l’équation différentielle (E) : xy′′(x)− y′(x) + 4x3y(x) = 0.
1. Pour t ∈]0,+∞[, on pose f(t) = y(

√
t). Déterminer l’équation différentielle vérifiée par f

équivalente à celle vérifiée par y.
2. Résoudre (E) sur ]0,+∞[.
3. Résoudre (E) sur ]−∞, 0[.
4. Résoudre (E) sur R.

Exercice 9 ⋆⋆

On considère l’équation différentielle

(E) t2y′′ + 4ty′ + 2y = 1

1. À l’aide du changement de variable t = ex, déterminer les solutions de l’équation différentielle
sur ]0,+∞[

2. En déduire les solutions de (E) sur ]−∞, 0[.

Exercice 10 ⋆⋆⋆

Soit (E) : (1− t2)y′′ − ty′ + y = 0.
1. Résoudre (E) sur l’intervalle ]− 1, 1[ (on pourra poser t = cos(u)).
2. Résoudre (E) sur l’intervalle ]1,+∞[ (faire un changement de variable bien choisi comme en

1.)
3. À l’aide du résultat de la question 2., résoudre (E) sur l’intervalle ]−∞,−1[.
4. Déterminer les solutions de (E) sur R.
5. Retrouver les résultats précédents par une autre méthode.

Exercice 11 ⋆⋆

On considère l’équation différentielle

(E) : t2y′′(t) + 4ty′(t) + (2− t2)y(t) = 1 sur ]0,+∞[

Résoudre (E) en posant z : t 7→ t2y(t)

Exercice 12 ⋆⋆

On considère l’équation différentielle

(E) : (1 + x)y′′ − y′ − xy = 0 sur ]− 1,+∞[

1. Déterminer une solution de (E) de la forme x 7→ exp(αx)

2. En déduire toutes les solutions de (E).

Exercice 13 ⋆⋆⋆

On considère l’équation différentielle

(E) : (1 + x2)y′′ + 4xy′ +
1 + 2x2

1 + x2
y =

1√
1 + x2
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1. Soit h : x 7→ 1√
1 + x2

. h est elle solution de (E) ?

2. En déduire toutes les solutions de (E).

Exercice 14 ⋆⋆

Résoudre les systèmes différentiels suivants :

(S)

{
x′ = x+ y
y′ = x− y

(S′)

{
x′ = x− y
y′ = 2y

Exercice 15 ⋆⋆⋆

À l’aide d’un système différentiel linéaire, résoudre l’équation linéaire d’ordre 3 :

y(3) − 3y′′ − y′ + 3y = 0.

.

Exercice 16 ⋆⋆

Soit n ⩾ 1 et E = Rn[X]. Pour P ∈ E on pose f(P ) = (X + 1)P ′ + P

1. Montrer que f est un endomorphisme de E

2. À l’aide de sa matrice dans la base canonique, justifier que f est diagonalisable.
3. Déterminer les éléments propres de f .

Exercice 17 ⋆⋆

Soit E l’ensemble des fonctions de classe C1 sur [0,+∞[ qui s’annulent en 0.
1. Montrer que E est un espace vectoriel

2. Soit f ∈ E, montrer que la fonction t 7→ f(t)

t
est prolongeable par continuité en 0.

3. Pour f ∈ E et x ⩾ 0 on pose T (f)(x) =

∫ x

0

f(t)

t
dt.

Montrer que T (f) est bien définie et que T (f) ∈ E.
4. Montrer que T est un endomorphisme de E.
5. Étudier les éléments propres de T .

Exercice 18 ⋆⋆⋆

On considère l’équation différentielle

(E) : xy′′ + 2y′ + xy = 0

1. Montrer que (E) admet une solution développable en série entière et préciser son rayon de
convergence.

2. Reconnaître cette solution puis résoudre (E).
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Exercices issus d’oraux

Exercice 19 ⋆⋆⋆
(Oral 2008)

Déterminer les fonctions f de classe C2 sur R telles que

∀x ∈ R, f ′′(x) +−f(−x) = ex + e−x

On pourra introduire les fonctions g : x 7→ f(x)− f(−x) et h : x 7→ f(x) + f(−x)

Exercice 20 ⋆⋆⋆
(Oral 2011)

Résoudre à l’aide de séries entières, l’équation différentielle xy′′ + (x− 2)y′ − 2y = x+ 2

Exercice 21 ⋆⋆⋆
(Oral 2012)

On considère l’équation différentielle

(E) : x2y′′ + 4xy′ + (2− x2)y = 0

1. Résoudre l’équation différentielle u′′ − u = 0

2. Effectuer le changement de fonction y : x 7→ z(x)

x2
dans (E)

3. Déterminer les solutions de (E) développables en série entière au voisinage de 0.
4. En déduire toutes les solutions. Quelles sont les solutions ayant une limite finie à droite en

0 ?
Exercice 22 ⋆⋆

(Oral 2019)

Résoudre le système différentiel

{
x′ = 7x− y

y′ = x+ 5y
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Corrigés des exercices

Corrigé de l’exercice 1

1. y′ + cos(x)y = 0

Il nous faut calculer une primitive de x 7→ cos(x), x 7→ sin(x) en est une. L’ensemble des
solutions de notre équation différentielle est alors

S1 =
{
x 7→ Ke− sin(x) , K ∈ R

}
= Vect

(
x 7→ e− sin(x)

)
2. y′ +

1

x ln(x)
y = 0

Une primitive de x 7→ 1

x ln(x)
est x 7→ ln(| ln(x)|). L’ensemble des solutions de notre équation

différentielle est alors

S2 =
{
x 7→ Ke− ln(| ln(x)|) , K ∈ R

}
=

{
x 7→ K

| ln(x)|
, K ∈ R

}
= Vect

(
x 7→ 1

| ln(x)|

)
3. y′ + cos3(x)y = 0

Il nous faut calculer une primitive de x 7→ cos3(x), pour cela on va linéariser cos3(x)

cos3(x) =

(
eix + e−ix

2

)2

=
e3ix + 3eix + 3e−ix + e−3ix

8
=

cos(3x) + 3 cos(x)

4

Un primitive de x 7→ cos3(x) est alors x 7→ sin(3x) + 9 sin(x)

12
L’ensemble des solutions de notre équation différentielle est alors

S3 =

{
x 7→ K exp

(
− sin(3x) + 9 sin(x)

12

)
, K ∈ R

}
= Vect

(
x 7→ exp

(
− sin(3x) + 9 sin(x)

12

))
4. (1 + x2)y′ − 2xy = 0

x 7→ 1+ x2 ne s’annule jamais, notre équation différentielle est donc équivalente à l’équation

y′ − 2x

1 + x2
y = 0

Une primitive de x 7→ −2x

1 + x2
est x 7→ − ln(1 + x2).

L’ensemble des solutions de notre équation différentielle est alors

S4 =
{
x 7→ Keln(1+x2) , K ∈ R

}
=
{
x 7→ K(1 + x2) , K ∈ R

}
= Vect

(
x 7→ (1 + x2)

)
5. y′ +

1− 2x

x2
y = 0.

Une primitive de x 7→ 1− 2x

x2
est x 7→ − 1

x
− 2 ln(x).

L’ensemble des solutions de notre équation différentielle est alors

S5 =
{
x 7→ Ke

1
x+2 ln(x) , K ∈ R

}
=
{
x 7→ Kx2e

1
x , K ∈ R

}
= Vect

(
x 7→ x2e

1
x

)

Corrigé de l’exercice 2
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1. (1 + x2)y′ + xy = 0

La fonction x 7→ 1+x2 ne s’annule pas sur R, notre équation différentielle est alors équivalente
à

y′ +
x

1 + x2
y = 0

Une primitive de x 7→ x

1 + x2
est x 7→ 1

2
ln(1 + x2). Les solutions de l’équation différentielle

homogène y′ +
x

1 + x2
y = 0 sont donc de la forme x 7→ Ke−

1
2 ln(1+x2), i.e. x 7→ K√

1 + x2
,

K ∈ R.
L’ensemble des solutions de l’équation différentielle ((1 + x2)y′ + xy = 0 sur R est donc

S1 =

{
x 7→ K√

1 + x2
, K ∈ R

}

2. 2y′ − 1

1 + x
y = 0

On se place sur ]− 1,+∞[. Notre équation différentielle est équivalente à y′ − 1

2 + 2x
y = 0.

Une primitive de x 7→ −1

2

1

1 + x
est x 7→ −1

2
ln(1 + x)

L’ensemble des solutions de l’équation différentielle 2y′ − 1

1 + x
y = 0 sur ]− 1,+∞[ est alors

{
x 7→ K

√
1 + x , K ∈ R

}
3. y′ − 1√

1− x
y = 0

On se place sur ]−∞, 1[. Sur cet intervalle, une primitive de x 7→ − 1√
1− x

est x 7→ 2
√
1− x

L’ensemble des solutions de l’équation différentielle y′ − 1√
1− x

y = 0 sur ]−∞, 1} est alors

S3 =
{
x 7→ Ke−2

√
1−x , K ∈ R

}
4. xy′ + x2y = 0

On se place sur ]0,+∞[, sur cet intervalle notre équation est équivalente à y′ + xy = 0. Une

primitive de x 7→ x est x 7→ x2

2
.

L’ensemble des solutions de l’équation différentielle xy′ + x2y = 0 sur ]0,+∞[ est alors

S4 =
{
x 7→ Ke−

x2

2 , K ∈ R
}

5. cos(x)y′ + sin(x)y = 0

On sait que l’ensemble des solutions d’une équation différentielle linéaire homogène de degré
1 est un espace vectoriel de dimension 1. Il est donc engendré par n’importe lequel de ses
éléments non-nuls. On peut remarquer que la fonction x 7→ cos(x) est une solution de cette
équation différentielle, ainsi l’ensemble des solutions de l’équation différentielle cos(x)y′ +
sin(x)y = 0 est

S5 = Vect(x 7→ cos(x)) = {x 7→ K cos(x) , K ∈ R}

Corrigé de l’exercice 3

1. L’équation caractéristique associée est r2 + r + 1 = 0 qui a pour solution j =
1

2
+ i

√
3

2
et

j2 =
1

2
− i

√
3

2
.
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Les solutions de l’équation homogène sur R sont les fonctions hA,B : t 7→ e−
t
2

(
A cos

(√
3

2
t

)
+B sin

(√
3

2
t

))
où (A,B) ∈ R2

On cherche une solution particulière de l’équation avec second membre en appliquant le
principe de superposition des solutions : on va rechercher une solution particulière sous la
forme t 7−→ λet pour le second membre et, puis rechercher une solution particulière sous la
forme t 7−→ at2 + bt+ c pour le second membre t2.
Finalement l’ensemble des solutions de (E1) est

S1 =

{
t 7−→ e−

t
2

(
A cos

(√
3

2
t

)
+B sin

(√
3

2
t

))
+

1

3
et + t2 − 2t , (A,B) ∈ R2

}

2. L’équation caractéristique associée est r2 − 2r + 1 = 0 qui a pour solution double 1

Les solutions de l’équation homogène sur R sont les fonctions hA,B : t 7→ (A + Bt)et où
(A,B) ∈ R2.
On cherche une solution particulière de l’équation avec second membre en appliquant le
principe de superposition des solutions : on va rechercher une solution particulière sous la
forme t 7−→ λt2et pour le second membre et, puis rechercher une solution particulière sous la
forme t 7−→ a cos(t) + b sin(t) pour le second membre cos(t) (la famille (cos, sin) est libre ce
qui permet d’identifier les coefficients.)
Finalement l’ensemble des solutions de (E2) est

S2 =

{
t 7−→ (A+ tB)et +

1

2
t2et − 1

2
sin t , (A,B) ∈ R2

}

Corrigé de l’exercice 4

1. — On résout d’abord sur I =]−∞, 0[ ou ]0, 1[ ou ]1,+∞[ :

Sur chacun de ces intervalles l’équation est équivalente à y′ +
1

t(t− 1)
y =

1

t− 1
.

Pour primitiver la fonction t 7→ 1

t(t− 1)
on réalise une décomposition en éléments

simples :
∀t ∈ R \{0, 1}, 1

t(t− 1)
=

1

t− 1
− 1

t

Ainsi la fonction t 7→ ln(|t|)− ln(|t− 1|) = ln

(∣∣∣∣ t− 1

t

∣∣∣∣) est une primitive de la fonction

t 7→ 1

t(t− 1)

On en déduit que, sur chacun de ces intervalles, les solutions de l’équation homogène
sont les fonctions de la forme t 7−→ Ct

t− 1
, avec C ∈ R

À priori les solutions
sont de la forme
t 7→ C

∣∣∣∣ t

t− 1

∣∣∣∣ mais

les quantités sont de
signe constant sur
les intervalles consi-
dérés donc on peut
faire rentrer le signe
dans la constante c.

Solutions

On utilise la méthode de variation de la constante pour trouver une solution particulière.
Soit k une fonction de classe C1 sur I.

La fonction p définie sur I par p(t) =
k(t)t

t− 1
est solution de l’équation différentielle si et

seulement si, pour tout t ∈ I, k′(t)t2 = t, ce qui équivaut à k′(t) =
1

t
.

Ainsi p est solution de (E1) si et seulement si il existe c ∈ R, telle que, pour tout t ∈ I,
k(t) = ln(|t|) + c

Donc p est solution de (E1) si et seulement si il existe c ∈ R, telle que, pour tout t ∈ I,

p(t) =
ct

t− 1
+

t ln(|t|)
t− 1

— Il faut étudier les recollements éventuels en 0 et en 1 ;
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Soit (c1, c2, c3) ∈ R3 et

p : t 7→



c1t

t− 1
+

t ln(|t|)
t− 1

si t < 0

c2t

t− 1
+

t ln(|t|)
t− 1

si t ∈]0, 1[
c3t

t− 1
+

t ln(|t|)
t− 1

si t > 1

Quels que soient (c1, c2, c3) on a lim
t→0

p(t) = 0, toutes les solutions se recollent bien en 0

de manière continue.
Regardons maintenant si ce recollement est de classe C1.
Pour t ∈]0, 1[ on a

p′(t) =
− ln (|t|) + t− c2 − 1

(t− 1)
2

Quel que soit c2 on a toujours lim
t→0+

p′(t) = +∞, ainsi on ne pourra jamais faire de

recollement C1 en 0.
Étudions la possibilité d’un recollement en 1.

On sait que lim
t→1

ln(t)

t− 1
= 1, ainsi lim

t→1−
p(t) = 1 si c2 = 0 et ±∞ si c2 6= 0, de même en

1+.
Il n’y a alors de recollement continu que si c2 = c3 = 0.
Pour t ∈]0, 1[∪]1,+∞[ on a alors

p′(t) =
− ln (t) + t− 1

(t− 1)
2

=
t→1

−
(
(t− 1)− (t−1)2

2 + o((t− 1)2)
)
+ t− 1

(t− 1)
2

=
t→1

1

2
+ o(1)

−→
t→1

1

2

La fonction p prolongée par continuité en 1 est continue et sa dérivée admet une li-
mite finie en 1, le théorème de la limite de la dérivée nous permet de conclure que ce
prolongement est de classe C1 sur ]0,+∞[.

2. — Sur I = R∗
+ ou R∗

− l’équation est équivalente à y′ +
et + 1

et − 1
y =

3 + 2et

et − 1

Pour t 6= 0 on a et + 1

et − 1
=

e
t
2 + e−

t
2

e
t
2 − e−

t
2

=
ch
(
t
2

)
sh
(
t
2

)
Une primitive de la fonction t 7→ et + 1

et − 1
est ainsi la fonction t 7→ 2 ln

(∣∣∣∣sh( t

2

)∣∣∣∣).

Les solutions de l’équation homogène sont ainsi les fonctions de la forme t 7−→ C(
sh
(
t
2

))2
avec C ∈ R qui peuvent se réécrire sous la forme t 7−→ Cet

(et − 1)
2 .

Par la méthode de variation de la constante on trouve que les solutions de l’équation

avec second membre sur I sont les fonctions de la forme t 7−→ (C + 3e−t + 2et + t)et

(et − 1)
2

avec C ∈ R.
— Étudions maintenant l’éventuel recollement en 0.

Soit C ∈ R et f : t 7→ (C + 3e−t + 2et + t)et

(et − 1)
2
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On a par développement limité

(C + 3e−t + 2et + t)et

(et − 1)
2 =

t→0

C + 5

t2
+

25− C

12
+ o(1)

Ainsi il n’est possible de faire un recollement continu des solutions en 0 que si C = −5.
Prenons donc C = −5 et regardons si notre prolongement par continuité en 0 est de
classe C1.
Pour t 6= 0 on a

f ′(t) =
et ((2− t)et − t− 2)

(et − 1)
3

Or (2− t)et − t− 2 =
t→0

− t3

6
+ o(t3), d’où

f ′(t) ∼
t→0

1×− t3

6

t3
∼

t→0
−1

6
−→
t→0

−1

6

La fonction f prolongée par continuité en 0 est continue et sa dérivée admet une li-
mite finie en 0, le théorème de la limite de la dérivée nous permet de conclure que ce
prolongement est de classe C1 sur R.

Corrigé de l’exercice 5
C’est une équation différentielle linéaire, que l’on résout séparément sur R∗

+ et R∗
−

— Sur R∗
+, l’équation est équivalente à xy′ − y = x2.

Les solutions de l’équation homogène associées sont de la forme x 7→ Kx, où K ∈ R. Par
variation de la constante, on obtient les solutions de l’équation avec second membre qui sont
de la forme x 7→ Kx+ x2 avec K ∈ R.

— Sur R∗
−, l’équation est équivalente à −xy′ − y = x2.

Les solutions de l’équation homogène associées sont de la forme x 7→ K ′

x
, où K ′ ∈ R. Par

variation de la constante, on obtient les solutions de l’équation avec second membre qui sont

de la forme x 7→ K ′

x
− x2

3
avec K ′ ∈ R

— Étude du raccordement en 0.

Soit (K,K ′) ∈ R2 et f : x 7→

Kx+ x2 si x > 0
K ′

x
− x2

3
si x < 0

Pour que lim
x→0−

f(x) existe, il faut et il suffit que K ′ = 0. Dans ce cas on a bien lim
x→0+

f(x) =

lim
x→0−

f(x) = 0. La fonction f se prolonge donc par continuité en 0.

Regardons maintenant si ce prolongement est de classe C1.
À droite la fonction x 7→ Kx+ x2 est de classe C1 sur [0,+∞[, vaut 0 en 0 et sa dérivée vaut
K.

À gauche la fonction x 7→ x2

3
est de classe C1 sur ]−∞, 0], vaut 0 en 0 et sa dérivée vaut 0.

Pour que le prolongement soit de classe C1 en 0 il faut et il suffit que K = 0.
Finalement, il existe une unique solution f de (E) de classe C1 sur R, il s’agit de la fonction

f : x 7→


x2 si x > 0

−x2

3
si x < 0

0 si x = 0
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Corrigé de l’exercice 6

Soit y une solution de l’équation différentielle. On pose z(t) = ty(t).
Comme y est de classe C2 sur R, z l’est aussi.
Soit t ∈ R, on a alors z′(t) = y(t) + ty′(t) et z′′(t) = 2y′(t) + ty′′(t).
Ainsi ty′′ + 2y′ − aty = z′′ − az, z est ainsi solution de l’équation z′′ − az = 0.
Comme a < 0 il existe alors (A,B) ∈ R2 tel que

∀t ∈ R, z(t) = A cos(
√
−at) +B sin(

√
−at)

Ainsi
∀t 6= 0, y(t) =

A cos(
√
−at) +B sin(

√
−at)

t

Or y est une solution de (E) sur R, elle est donc de classe C2 sur R. On va donc étudier le
recollement en 0.

— Au voisinage de 0, y(t) =
t→0

A

t
+B

√
a− At

2
+ o(t)

Si A 6= 0, y admet une limite infinie en 0, on ne peut donc pas la prolonger par continuité en
0. On a donc A = 0.
Pour t 6= 0 on a alors par développement en série entière

y(t) =
B sin(

√
−at)

t
=

+∞∑
n=0

√
−a

2n+1
t2n

(2n+ 1)!

La fonction t 7→
+∞∑
n=0

√
−a

2n+1
t2n

2n+ 1)!
est une fonction développable en série entière de rayon

infini, elle est donc de classe C∞ sur R. Ainsi la fonction t 7→ B sin(
√
−at)

t
prolongée par

continuité en 0 est de classe C∞.

On vérifie par un calcul rapide que les fonctions de la forme t 7→ B sin(
√
−at)

t
prolongées par

continuité en 0 sont bien solutions de (E).

Finalement les solutions de (E) sont exactement les fonctions de la forme t 7→ B sin(
√
−at)

t
prolongées par continuité en 0

Corrigé de l’exercice 7

1. Notons (H) l’équation y′′ − 2y′ + 5y = 0

Son polynôme caractéristique est X2−2X+5 qui a pour racines 1+2i et 1−2i. Les solutions
de (H) sont donc les fonctions de l’ensemble

S(H) =
{
x 7→ ex (A cos(2x) +B sin(2x)) , (A,B) ∈ R2

}
2. La fonction exp : R → R est dérivable sur R et à valeurs dans R∗

+, et la fonction y : R∗
+ → R

est dérivable sur R∗
+. D’après le théorème de dérivation des composées, z = y ◦ exp est

dérivable sur R. On a alors
∀x ∈ R z′(x) = exy′(ex)

On montre de même que z′ est dérivable, comme composée et produit de fonctions dérivables
et on obtient

∀x ∈ R z′′(x) = exy′(ex) + exexy′′(ex) = z′(x) + (ex)2y′′(ex)
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3. La fonction y est solution de (E) sur R∗
+ si et seulement si

∀t ∈ R∗
+, t2y′′(t) + aty′(t) + by(t) = c(t)

Ainsi, en prenant t = ex > 0 on obtient

∀x ∈ R, (ex)2y′′(ex) + aexy′(ex) + by(ex) = c(ex)

C’est-à-dire
∀x ∈ R, z′′(x) + (a− 1)z′(x) + bz(x) = c(ex)

On en déduit que, si y est solution de (E) alors z est solution sur R de l’équation

z′′ + (a− 1)z′ + bz = c(ex)

Réciproquement supposons que z est solution sur R de l’équation

z′′ + (a− 1)z′ + bz = c(ex)

C’est-à-dire
∀x ∈ R, (ex)2y′′(ex) + aexy′(ex) + by(ex) = c(ex)

En prenant le cas x = ln(t) on a alors

∀t ∈ R∗
+, t2y′′(t) + aty′(t) + by(t) = c(t)

C’est-à-dire y est solution de (E) sur R∗
+

On a ainsi montré que y était solution de (E) si et seulement si z est solution sur R de
l’équation

z′′ + (a− 1)z′ + bz = c(ex)

4. Ici, a = −1, b = 5, on a donc a− 1 = −2.
D’après la question 3., la fonction y : R∗

+ → R est solution de (E1) si et seulement si la
fonction z : R → R

x 7→ y(ex)
est solution sur R de z′′ − 2z′ + 5z = 0

On a la bonne surprise de retrouver l’équation résolue dans la partie A. On rappelle que les
solutions de (E0) sont les fonctions de la forme

x 7→ ex (A cos(2x) +B sin(2x))

avec A et B des réels.
On a alors

∀x ∈ R z(x) = y(ex) ⇐⇒ ∀t ∈ R∗
+ y(t) = z(ln(t))

On en déduit que les solutions de (E1) sur R∗
+ sont les fonctions de la forme

t 7→ t (A cos(2 ln(t)) +B sin(2 ln(t))) avec λ, µ(A,B) ∈ R2

Corrigé de l’exercice 8

1. Sur ]0,+∞[ la fonction racine carrée est de classe C∞ et de plus c’est une bijection de ]0,+∞[
vers ]0,+∞[.
Ainsi f est de classe C2 sur ]0,+∞[ si et seulement y est de classe C2 sur ]0,+∞[.
Dans ce cas on a

∀t ∈]0,+∞[, f ′(t) =
y′(

√
t)

2
√
t

, et f ′′(t) =
y′′(

√
t)

4t
− y′(

√
t)

4t
√
t

Ainsi, pour t ∈]0,+∞[ on a

y′(
√
t) = 2

√
tf ′(t) et y′′(

√
t) = 4tf ′′(t) + 2f ′(t)

11 Bastien Marmeth



Lycée La Martinière Monplaisir PT

D’où
√
ty′′(

√
t)− y′(

√
t) + 4t

3
2 y(

√
t) =

√
t (4tf ′′(t) + 2f ′(t))− 2

√
tf ′(t) + 4t

3
2 f(t)

= 4t3/2 (f ′′(t) + f(t))

On en déduit que y est solution de (E) si et seulement si f est solution de l’équation diffé-
rentielle f ′′ + f = 0.

2. On a f ′′ + f = 0 si et seulement si il existe (, B) ∈ R2 tel que, pour tout t ∈]0,+∞[,
f(t) = A cos(t) +B sin(t).
Ainsi y est solution de (E) si et seulement si il existe (A,B) ∈ R2 tel que, pour tout t ∈]0,+∞[,
y(
√
t) = A cos(t) +B sin(t).

Par bijectivité de la fonction racine carrée sur ]0,+∞[ on en déduit que y est solution de (E)
si et seulement si il existe (A,B) ∈ R2 tel que, pour tout x ∈]0,+∞[, y(x) = A cos(x2) +
B sin(x2).

3. Soit (A,B) ∈ R2 et y : ]−∞, 0[ → R
x 7→ A cos(x2) +B sin(x2)

.

On a alors xy′′(x)− y′(x) + 4x3y(x) = 0.
Ainsi, en notant S − l’ensemble des solutions de (E) sur ]−∞, 0[ on a

Vect(x 7→ cos(x2), x 7→ sin(x2)) ⊂ S −

Or le théorème de Cauchy-Lipschitz nous assure que S − est une espace vectoriel de dimension
2. Puisque la famille (x 7→ cos(x2), x 7→ sin(x2)) est libre on en déduit que

S − = Vect(x 7→ cos(x2), x 7→ sin(x2))

4. Toutes les solutions précédentes se recollent bien de manière C1 en 0, ainsi, l’ensemble des
solutions de (E) sur R est Vect(x 7→ cos(x2), x 7→ sin(x2)).

Corrigé de l’exercice 9

1. Il s’agit d’une équation d’Euler (c.f. Exercice 7), on sait que y est solution de l’équation (E)
sur ]0,+∞[ si et seulement si la fonction z : x 7→ y(ex) est solution de (E′) : z′′+3z′+2z = 1

Cette équation à la fonction constante en 1/2 comme solution particulière et l’équation
caractéristique associée à l’équation homogène liée à (E′) a pour racines −1 et −2. Ainsi, les
solutions de (E′) sont de la forme :

z : x 7→ 1

2
+ C1e

−x + C2e
−2x

où C1 et C2 sont des constantes réelles. Finalement, les solutions de (E) sur R∗
+ sont de la

forme :
y : t 7→ 1

2
+

C1

t
+

C2

t2

où C1 et C2 sont des constantes réelles.
2. Soit y une solution de (E) sur ]−∞, 0[ on a ainsi

∀t < 0, t2y′′(t) + 4ty′(t) + 2y(t) = 1

D’où, en prenant t = −s

∀s > 0, s2y′′(−s)− 4sy′(−s) + 2y(−s) = 1

Soit w : s 7→ y(−s), on a alors w′(s) = −y′(−s) et w′′(s) = y′′(−s). Ainsi

∀s > 0, s2w′′(s) + 4sw′(s) + 2w(s) = 1

Il existe donc D1 et D2 deux constantes réelles telles que

∀s > 0, w(s) =
1

2
+D1e

−s +D2e
−2s

D’où
∀t < 0, y(t) =

1

2
+D1e

t +D2e
2t
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Corrigé de l’exercice 10

1. On pose, pour u ∈]0, π[, z(u) = y(cosu), de sorte que y(t) = z(arccos t). Si y est de classe
C2, alors z aussi par composition.
Pour u ∈]0, π[ on a z′(u) = − sin(u)y′(cos(u)) et z′′(u) = − cos(u)y′(cos(u))+sin2(u)y′′(cos(u)).
Comme arccos est une bijection de ]− 1, 1[ sur ]0, π[, y est solution de (E) sur ]− 1, 1[ si et
seulement si z est solution de z′′ + z = 0 sur ]0, π[. On en déduit qu’il existe (A,B) ∈ R2 tel
que,

∀u ∈]0, π[, z(u) = A cos(u) +B sin(u)

On a de plus z(u) = A cos(u) +B
√

1− cos2(u) car u ∈]0, π[ donc sin(u) ⩾ 0

Ainsi, pour tout t ∈]− 1, 1[, y(t) = At+B
√

1− t2.
2. On pose, pour u ∈]0,+∞[, z(u) = y(ch(u)), de sorte que y(t) = z(argch(t)). Si y est de classe

C2, alors z aussi par composition.
Pour u > 0 on a alors z′(u) = sh(u)y′(ch(u)) et z′′(u) = ch(u)y′(ch(u)) + sh2(u)y′′(ch(u)).
Comme argch est une bijection de ]1,+∞[ sur ]0,+∞[, alors y est solution de (E) sur ]1,+∞[
si et seulement si z est solution de z′′ − z = 0 sur ]0,+∞[.
On en déduit qu’il existe (A,B) ∈ R2 tel que

∀u > 0, z(u) = A ch(u) +B sh(u)

Puisque u > 0 on a donc sh(u) > 0, d’où z(u) = A ch(u) +B

√
ch2(u)− 1

Ainsi, pour tout t > 1, y(t) = At+B
√
t2 − 1.

3. La solution générale trouvée sur l’intervalle ]1,+∞[ est aussi définie et de classe C1 sur
] − ∞,−1[, et elle vérifie l’équation sur cet intervalle. Comme on sait que les solutions sur
]−∞,−1[ forment un sous espace vectoriel de dimension 2, cela nous donne toutes les solutions
sur cet intervalle.

4. Soit (A,B) ∈ R2 et y : ]− 1, 1[ → R
t 7→ At+B

√
1− t2

Pour t ∈] − 1, 1[ on a y′(t) = A− Bt√
1− t2

. Ainsi y′ admet une limite finie en 1 et/ou −1 si

et seulement si B = 0.
De même les fonctions t 7→ At+B

√
t2 − 1 ne peuvent être prolongé de manière C1 en 1 et/ou

−1 que si B = 0.
Ainsi les seules solutions de (E)sur R sont les fonctions de la forme t 7−→ At, avecA ∈ R.

5. Si on cherche une solution de l’équation (E) sous forme polynomiale on trouve que la fonction
t 7→ t est solution. On cherche ensuite les solutions de (E) sous la forme t 7→ K(t)t.
Une telle fonction est solution de (E) si et seulement si K vérifie l’équation (t− t3)K ′′+(2−
3t2)K ′ = 0.
Ainsi K ′ doit être une solution de l’équation différentielle linéaire du premier ordre (t−t3)z′+
(2− 3t2)z = 0.

Plaçons nous sur ]1,+∞[, cette équation est équivalente à z′ +
3t2 − 2

t3 − t
z = 0.

Une décomposition en éléments simples nous donne

3t2 − 2

t3 − t
=

1

2 (t+ 1)
+

2

t
+

1

2 (t− 1)

Ainsi, les solutions de z′ +
3t2 − 2

t3 − t
z = 0 sont les fonctions de la forme

t 7→ A exp

(
− ln(t+ 1)

2
− 2 ln(t)− ln(t− 1)

2

)
=

A

t2
√
t2 − 1

Primitivons maintenant ces fonctions.
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Pour t0 > 1 et t > 1 on a∫ t

t0

1

s2
√
s2 − 1

ds =
∫ 1

t

1
t0

−1√
1
u2

2 − 1
du changement de variable u =

1

s

=

∫ 1
t

1
t0

−u√
1− u2

du

=
[√

1− u2
] 1

t

1
t0

=

√
1− 1

t2
−

√
1− 1

t20

=

√
t2 − 1

t
−
√
t20 − 1

t0

Ainsi les primitives des fonctions de la forme t 7→ A

t2
√
t2 − 1

sont les fonctions de la forme

t 7→ A

√
t2 − 1

t
+B avec (A,B) ∈ R2.

En d’autres termes K vérifie (t−t3)K ′′+(2−3t2)K ′ = 0 si et seulement si il existe (A,B) ∈ R2

tel que K : t 7→ A

√
t2 − 1

t
+B.

On en déduit que les solutions de (E) sur ]1,+∞[ sont les fonctions de la forme t 7→
A
√

t2 − 1 +Bt ce qui est bien le résultat obtenu plus tôt.
On procède mutatis mutandis sur ]−∞,−1[ et ]− 1, 1[.

Corrigé de l’exercice 11
Soit y une solution de (E) et z : t 7→ t2y(t). z est alors de classe C2 sur ]0,+∞[ et on a

∀t > 0, z′(t) = 2ty(t) + t2y′(t), z′′(t) = 2y(t) + 4ty′(t) + t2y′′(t)

Ainsi t2y′′(t) + 4ty′(t) + (2 − t2)y(t) = z′′(t) − z(t), z est donc une solution de l’équation
différentielle z′′ − z = 1.

L’ensemble des solutions de cette équation est

S = {t 7→ Aet +Be−t − 1 , (A,B) ∈ R2}

Ainsi, il existe (A,B) ∈ R2 tel que y : t 7→ Aet +Be−t − 1

t2
.

Réciproquement on vérifie sans difficulté que ces fonctions sont bien des solutions de (E) sur
]0,+∞[.

Finalement l’ensemble des solutions de (E) sur ]0,+∞[ est

SE = {t 7→ Aet +Be−t − 1

t2
, (A,B) ∈ R2}

Corrigé de l’exercice 12

1. Soit α ∈ R et f : x 7→ eαx. On a alors, pour x ∈ R,

(1 + x)f ′′(x)− f ′(x)− xf(x) =
(
α2 − α+ x(α2 − 1)

)
eαx

La famille (x 7→ 1, x 7→ x) étant libre on en déduit que f est solution de (E) si et seulement
si α = 1.
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2. On cherche les solutions de (E) sous la forme f : x 7→ K(x)ex. Une telle fonction est solution
de (E) si et seulement si K vérifie

∀t > −1, et(t+ 1)K ′′(t) + et(2t+ 1)K ′(t) = 0

Ainsi f est solution de (E) si et seulement si K ′ est solution de (Ẽ) : y′ +
2t+ 1

t+ 1
y = 0.

Les solutions de (Ẽ) sont les fonctions de la forme t 7→ Ae−2t+ln(t+1) = A(t+ 1)e−2t.
Une telle fonction se primitive aisément par intégration par parties.
Les fonctions K telles que, pour t > −1, et(t + 1)K ′′(t) + et(2t + 1)K ′(t) = 0 sont alors les

fonctions de la forme K : t 7→ B − (2t+ 3)A

4
e−2t avec (A,B) ∈ R2

On en déduit que l’ensemble des solutions de (E) est

S = {t 7→ Bet + (2t+ 3)Ae−t , (A,B) ∈ R2}

Corrigé de l’exercice 13

1. On a, pour x ∈ R,

(1 + x2)h′′(x) + 4xh′(x) +
1 + 2x2

1 + x2
h(x) = 0

Ainsi h n’est pas solution de (E) mais est solution de l’équation différentielle homogène
associée.

2. On cherche les solutions de (E) sous la forme f : x 7→ K(x)√
1 + x2

.

Une telle fonction f est solution de (E) si et seulement si K est solution de (x2+1)y′′+2xy′ =
1 ou encore si et seulement si K ′ est solution de (x2 + 1)y′ + 2xy = 1.

Les solutions de l’équation homogène associé sont de la forme x 7→ A

1 + x2
avec A ∈ R.

Par la méthode de variation de la constante on en déduit que les solutions de l’équation
(x2 + 1)y′ + 2xy = 1 sont les fonctions de la forme x 7→ A

1 + x2
+

x

x2 + 1
avec A ∈ R.

Par primitivation K est solution de (x2+1)y′′+2xy′ = 1 si et seulement il existe (A,B) ∈ R2

tel que

∀x ∈ R, K(x) = A arctan(x) +B +
ln(1 + x2)

2

Finalement l’ensemble des solutions de (E) est

S =

{
x 7→ A arctan(x)√

1 + x2
+

B√
1 + x2

+
ln(1 + x2)

2
√
1 + x2

, (A,B) ∈ R2

}

Corrigé de l’exercice 14

— Posons A =

(
1 1
1 −1

)
.

χA(X) = (X −
√
2)(X +

√
2). χA est scindé à racines simples, donc A est diagonalisable.

On obtient E√
2 = Vect

((
1√
2− 1

))
et E−

√
2 = Vect

((
1

−
√
2− 1

))
.

Soit P =

(
1 1√
2− 1 −

√
2− 1

)
et D =

(√
2 0

0 −
√
2

)
.

On a alors D = P−1AP . Soit x, y des fonctions dérivables sur R

Le système différentiel
(
x
y

)′

= A

(
x
y

)
équivaut au système P−1

(
x
y

)′

= DP−1

(
x
y

)

15 Bastien Marmeth



Lycée La Martinière Monplaisir PT

On pose
(
x1

y1

)
= P−1

(
x
y

)
Notre système est alors équivalent à

{
x′
1 =

√
2x1

y′1 = −
√
2y1

Un couple de fonction (x1, y1) est ainsi solution s’il existe (a, b) ∈ R2, tel que, pour tout
t ∈ R, x1(t) = ae

√
2t et y1(t) = be−

√
2t.

Or
(
x
y

)
= P

(
x1

y1

)
Ainsi

(
x
y

)
est solution du système si et seulement il existe (a, b) ∈ R2 tel que, pour tout

t ∈ R, x(t) = ae
√
2t + be−

√
2t et y(t) = a(

√
2− 1)e

√
2t − b(

√
2 + 1)e−

√
2t

— On va voir une autre méthode pour résoudre les systèmes linéaires 2 × 2 à coefficients
constants.

Cette méthode ne
fonctionne que pour
les systèmes 2 × 2
mais a l’avantage
d’être plus rapide
et surtout au pro-
gramme.

Autre méthode

Soit (x, y) solution de

{
x′ = x+ y

y′ = x− y

On a alors

x′′ = x′ + y′

= x′ + x− y

= x′ + x− (x′ − x)

= 2x

x est solution de l’équation x′′ = 2x, on en déduit qu’il existe (a, b) ∈ R2 tel que

∀t ∈ R2, x(t) = ae
√
2t + be−

√
2t

On a ensuite y = x′ − x, d’où

∀t ∈ R2, y(t) = a(
√
2− 1)e

√
2t − b(

√
2 + 1)e−

√
2t

— On pourrait reprendre la méthode matricielle mais on va essayer de résoudre le système en
restant dans les limites du programme
L’équation y′ = 2y admet pour solution les fonctions de la forme y : t 7→ Ae2t, où A ∈ R.
L’équation x′ = x − y devient alors x′ − x = −Ae2t. Il s’agit d’une équation différentielle
linéaire d’ordre 1 qui admet comme solution les fonctions de la forme t 7→ Bet − Ae2t où
(A,B) ∈ R2.
Finalement x et y sont solutions de ce système si et seulement si il existe (A,B) ∈ R2 tel que

∀t ∈ R, x(t) = Bet −Ae2t et y(t) = Ae2t

Corrigé de l’exercice 15

Soit y une solution de l’équation différentielle linéaire.

On pose X(t) =

 y(t)
y′(t)
y′′(t)

, on a alors X ′(t) = AX(t) avec A =

 0 1 0
0 0 1
−3 1 3


Par le calcul on a χA = X3 − 3X2 −X + 3. 1 est racine évidente de ce polynôme ce qui nous

permet de la factoriser : χA = (X − 1)(X + 1)(X − 3)

A est une matrice carrée de taille 3 qui admet 3 valeurs propres distinctes, elle est donc diago-
nalisable

Soit P ∈ GL3(R) tel que A = P

1 0 0
0 −1 0
0 0 3

P−1
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En posant

x1

x2

x3

 = P−1

 y(t)
y′(t)
y′′(t)

 on a alors le système


x′
1 = x1

x′
2 = −x2

x′
3 = 3x3

Il existe donc (a, b, c) ∈ R3 tel que, pour t ∈ R,

x1(t)
x2(t)
x3(t)

 =

 aet

be−t

ce3t


On a alors

 y(t)
y′(t)
y′′(t)

 = P

 aet

be−t

ce3t


y est ainsi une combinaison linéaire des fonctions t 7→ et, t 7→ e−t et t 7→ e3t.
En d’autres termes, il existe (A,B,C) ∈ R3 tel que

∀t ∈ R, y(t) = Aet +Be−t + Ce3t

Corrigé de l’exercice 16

1. Soit (P,Q) ∈ E2 et a ∈ R, on a alors

f(P+aQ) = (X+1)(P+aQ)′+(P+aQ) = (X+1)P ′+P+a ((X + 1)Q′ +Q) = f(P )+af(Q)

f est donc linéaire.
De plus deg(f(P )) ⩽ max(deg((X+1)P ′, deg(P )) ⩽ max(1+deg(P )−1, deg(P )) ⩽ n. Ainsi
f(P ) ∈ E.
Finalement f est bien un endomorphisme de E.

2. On a f(1) = 1 et, pour k ∈ J1, nK, f(Xk) = (k+1)Xk + kXk−1 La matrice de f dans la base
canonique est donc

MatBCan
(f) =



1 1 0 · · · · · · 0

0 2 2
. . .

...
...

. . . 3
. . .

...
...

. . .
. . . n

0 · · · · · · · · · 0 n+ 1


Cette matrice est triangulaire donc ses valeurs propres (qui sont aussi celles de f) sont ses
coefficients diagonaux. Ainsi Sp(f) = J1, n+ 1K.
f est un endomorphisme d’un espace de dimension n + 1 qui admet n + 1 valeurs propres
distinctes, il est donc diagonalisable.

3. Soit k ∈ J1, n+ 1K, un polynôme P est un vecteur propre de f pour la valeur propre k si et
seulement il est solution de l’équation différentielle (x+ 1)y′ + y = ky.

Sur ] − 1,+∞[ cette équation est équivalente à y′ +
1− k

x+ 1
y = 0 qui a pour ensemble de

solutions {x 7→ A(x+ 1)k−1 , A ∈ R}
Un vecteur propre de f pour la valeur propre doit alors coïncider avec une fonction poly-
nomiale de la forme x 7→ A(x + 1)k−1 sur ] − 1,+∞[. Comme cet ensemble est infini cela
nous indique que les seuls vecteurs propres possibles de f pour la valeur propre k sont les
polynômes de Vect((X + 1)k−1).

Deux polynômes
qui coïncident sur
un ensemble infini
sont égaux partout
car leur différence
admet une infinité
de racines.

Polynômes

On vérifie aisément que ces polynômes sont bien des vecteurs propres de f .
Finalement, pour tout k ∈ J1, n+ 1K on a Ek(f) = Vect((X + 1)k−1)

Corrigé de l’exercice 17
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1. Soit φ l’application définie sur C1([0,+∞[) par φ(f) = f(0).
φ est linéaire et E = Ker(φ) ainsi E est un sous-espace vectoriel de C1([0,+∞[) et donc un
espace vectoriel.

2. Soit f ∈ E, pour t 6= 0 on a f(t)

t
=

f(t)− f(0)

t− 0
−→
t→0

f ′(0).

La fonction t 7→ f(t)

t
est ainsi prolongeable par continuité en 0.

3. La fonction t 7→ f(t)

t
est ainsi prolongeable par continuité en 0. L’intégrale définissant la

fonction T (f) est ainsi faussement impropre, T (f) est donc bien définie.

De plus T (f) est une primitive de la fonction continue t 7→ f(t)

t
, T (f) est donc une fonction

de classe C1 ; On a également T (f)(0) = 0. Ainsi T (f) ∈ E.
4. Il ne nous reste plus qu’à montrer la linéarité.

Soit (f, g) ∈ E2 et α ∈ R.
Pour x ⩾ 0 on a

T (f+αg)(x) =

∫ x

0

(f + αg)(t)

t
dt =

∫ x

0

f(t) + αg(t)

t
dt =

∫ x

0

f(t)

t
dt+α

∫ x

0

g(t)

t
dt = T (f)(x)+αT (g)(x)

Ainsi T est linéaire. Comme on sait que, pour toute fonction f ∈ e on a T (f) ∈ E on en
déduit que T est un endomorphisme de E.

5. Soit λ ∈ R, on cherche s’il existe des fonctions f ∈ E telles que T (f) = λf .
On va procéder par analyse-synthèse.
Analyse :
Soit f ∈ E telle que T (f) = λf .

On a alors T (f)′ = λf , i.e. λf ′ =
1

t
f .

Si λ = 0 alors f = 0. Un vecteur propre étant nécessairement non-nul on en déduit que 0
n’est pas une valeur propre de f .

Pour λ 6= 0, f est une solution de l’équation différentielle f ′ − 1

λt
f = 0 sur ]0,+∞[.

L’ensemble des solutions de cette équation sur ]0,+∞[ est
{
t 7→ At

1
λ , a ∈ R

}
Si λ est négatif aucune de ces fonctions à part la fonction nulle n’est prolongeable par conti-
nuité en 0. Puisque f ∈ E on a donc f = 0. Là encore on en déduit que λ n’est pas une
valeur propre de f .

Si λ > 1 alors 1

λ
< 1, les fonctions t 7→ At

1
λ avec A 6= 0 se prolonge par continuité en 0 mais

ce prolongement n’est pas de classe C1 en 0. Puisque f ∈ E on a donc f = 0. Là encore on
en déduit que λ n’est pas une valeur propre de f .
Synthèse :

Si λ ∈]0, 1] alors les fonctions t 7→ At
1
λ avec A 6= 0 se prolongent par continuité en 0 et le

prolongement est de classe C1, ce sont bien des éléments de E.
Par calcul on a, pour x ⩾ 0,∫ x

0

At
1
λ

t
dt =

∫ x

0

At
1
λ−1 dt =

[
λAt

1
λ

]x
0
= λAx

1
λ

Ainsi, les fonctions t 7→ At
1
λ avec A 6= 0 sont bien des vecteurs propres de T pour la valeur

propre λ.

Finalement Sp(T ) =]0, 1] et, pour λ ∈]0, 1] on a Eλ(T ) = Vect
(
x 7→ x

1
λ

)
.

Corrigé de l’exercice 18
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1. On cherche une solution de (E) développable en série entière de la forme x 7→
+∞∑
n=0

anx
n de

rayon de convergence strictement positif.

Si y est développable en série entière de la forme x 7→
+∞∑
n=0

anx
n de rayon R > 0 alors, pour

x ∈]−R,R[ on a

xy′′(x) + 2y′(x) + xy(x) =

+∞∑
n=2

n(n− 1)anx
n−1 + 2

+∞∑
n=1

nanx
n−1 +

+∞∑
n=0

anx
n+1

=

+∞∑
n=2

n(n− 1)anx
n−1 + 2a1 + 2

+∞∑
n=2

nanx
n−1 +

+∞∑
n=2

an−2x
n−1

= 2a1 +

+∞∑
n=2

(n(n− 1)an + 2nan + an−2)x
n−1

= 2a1 +

+∞∑
n=2

(n(n+ 1)an + an−2)x
n−1

Par unicité du développement en série entière y est solution de (E) si et seulement si a1 = 0

et, pour tout n ⩾ 0, an+2 =
−1

(n+ 2)(n+ 3)
an.

On en déduit que, pour tout entier n impair on a an = 0

Si n est pair il existe alors p ∈ N tel que n = 2p, d’où a2p+2 =
−1

(2p+ 2)(2p+ 3)
a2p.

On peut alors montrer par une récurrence aisée (laissée au lecteur) que, pour p ∈ N on a

a2p =
(−1)p

(2p+ 1)!

Ainsi, pour x ∈]−R,R[ on a

y(x) =

+∞∑
p=0

(−1)p

(2p+ 1)!
x2p

Le rayon de convergence de cette série entière est +∞ d’après le critère de D’Alembert pour
les séries numériques.

2. On reconnaît dans la question précédente le développement en série entière de la fonction

x 7→ sin(x)

x
.

On résout désormais (E) par la méthode de variation de la constante : on va chercher une

solution de (E) sous la forme fx 7→ K(x)
sin(x)

x
avec K une fonction de classe C2 sur R.

Une telle fonction est solution de (E) si et seulement si

∀x ∈ R, sin(x)K ′′(x) + 2 cos(x)K ′(x) = 0

Ainsi f est solution de (E) si et seulement si K ′ est solution de sin(x)y′ + 2 cos(x)y = 0.

Sur tout intervalle de la forme ]kπ, (k+1)π[ cette équation est équivalente à y′+
2 cos(x)

sin(x)
y = 0.

L’ensemble des solutions de cette équation est {x 7→ A exp (−2 ln(| sin(x)|) , a ∈ R}, i.e.{
x 7→ A

sin(x)2
, a ∈ R

}
Pour x ∈]kπ, (k + 1)π[ on a

1

sin(x)2
=

1

cos(x)2
1

tan(x)2
=

tan′(x)

tan(x)2

Ainsi f est solution de (E) sur ]kπ, (k + 1)π[ si et seulement si il existe (A,B) ∈ R2 tel que

∀x ∈]kπ, (k + 1)π[ K(x) =
−A

tan(x)
+B
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D’où f est solution de (E) sur ]kπ, (k + 1)π[ si et seulement si il existe (A,B) ∈ R2 tel que

∀x ∈]kπ, (k + 1)π[ f(x) =
A cos(x)

x
+B

sin(x)

x

Une telle fonction se prolonge par continuité en tout réel de la forme kπ avec k ∈ Z \{0} et
le prolongement est de classe C1.
Par contre elle se prolonge par continuité en 0 si et seulement si A = 0.
Finalement l’ensemble des solutions de (E) sur ]0,+∞[ ou ]−∞, 0[ est{

x 7→ A cos(x)

x
+B

sin(x)

x
, (A,B) ∈ R2

}
mais l’ensemble des solutions de (E) sur R est{

x 7→ B
sin(x)

x
, B ∈ R

}

Corrigé de l’exercice 19
On va procéder par analyse-synthèse

Analyse :

Soit f une fonction de classe C2 sur R telles que

∀x ∈ R, f ′′(x) + f(−x) = ex + e−x

Soit g : x 7→ f(x)− f(−x) et h : x 7→ f(x) + f(−x)
L’idée est de décom-
poser f suivant sa
partie paire et sa
partie impaire.

idée

On a alors, pour x ∈ R

g′(x) = f ′(x)+f ′(−x) g′′(x) = f ′′(x)−f ′′(−x) h′(x) = f ′(x)−f ′(−x) h′′(x) = f ′′(x)+f ′′(−x)

D’où
f ′′(x) + f(−x) =

h′′(x) + g′′(x) + h(x)− g(x)

2

On a ainsi, pour tout x ∈ R

h′′(x) + h(x)

2
+

g′′(x)− g(x)

2
= ex + e−x

D’où, en −x, h′′(−x) + h(−x)

2
+

g′′(−x)− g(−x)

2
= ex + e−x

Or, g et g′′ sont impaires et h et h′′ sont paires, ainsi pour tout x ∈ R

h′′(x) + h(x)

2
− g′′(x)− g(x)

2
= ex + e−x

Par addition et soustraction de ces deux équations on en déduit que, pour tout x ∈ R

h′′(x) + h(x) = 2ex + 2e−x, et g′′(x)− g(x) = 0

La première équation a pour ensemble de solutions {x 7→ ex+e−x+A cos(x)+B sin(x) , (A,B) ∈
R2} et la seconde a pour ensemble de solutions {x 7→ C ch(x) +D sh(x) , (C,D) ∈ R2}.

Puisque h est paire et g est impaire alors il existe (A,D) ∈ R2 tel que

∀x ∈ R, h(x) = ex + e−x +A cos(x) et g(x) = D sh(x)

D’où, puisque f =
h+ g

2
, il existe donc (a, b) ∈ R2 tel que

∀x ∈ R, f(x) = ch(x) + a cos(x) + b sh(x)
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Synthèse :

Soit (a, b) ∈ R2 et f : x 7→ ch(x) + a cos(x) + b sh(x). f est bien de classe C2 sur R
De plus, on a, pour x ∈ R,

f ′′(x) + f(−x) = ch(x)− a cos(x) + b sh(x) + ch(−x) + a cos(−x) + b sh(−x)

= ch(x)− a cos(x) + b sh(x) + ch(x) + a cos(x)− b sh(x)

= 2 ch(x)

= ex + e−x

Finalement les fonctions f de classe C2 sur R telles que

∀x ∈ R, f ′′(x)− f(−x) = ex + e−x

sont exactement les fonctions de la forme x 7→ ch(x) + a cos(x) + b sh(x) avec (a, b) ∈ R2.

Corrigé de l’exercice 20

On cherche une solution de (E) développable en série entière de la forme x 7→
+∞∑
n=0

anx
n de rayon

de convergence strictement positif.

Si y est développable en série entière de la forme x 7→
+∞∑
n=0

anx
n de rayon R > 0 alors, pour

x ∈]−R,R[ on a

xy′′(x) + (x− 2)y′(x)− 2y(x) =

+∞∑
n=2

n(n− 1)anx
n−1 +

+∞∑
n=1

nanx
n − 2

+∞∑
n=1

nanx
n−1 − 2

+∞∑
n=0

anx
n

=

+∞∑
n=1

n(n+ 1)an+1x
n +

+∞∑
n=1

nanx
n − 2

+∞∑
n=0

(n+ 1)an+1x
n − 2

+∞∑
n=0

anx
n

=

+∞∑
n=1

(n(n+ 1)an+1 + nan − 2(n+ 1)an+1 − 2an)x
n − 2a1 − 2a0

=

+∞∑
n=1

(n− 2) ((n+ 1)an+1 + an)x
n − 2a1 − 2a0

=

+∞∑
n=2

(n− 2) ((n+ 1)an+1 + an)x
n − (2a2 + a1)x− 2a1 − 2a0

Par unicité du développement en série entière, y est solution de l’équation différentielle si et
seulement si 

−2(a1 + a0) = 2

−(2a2 + a1) = 1

∀n ⩾ 2, (n− 2) ((n+ 1)an+1 + an)

D’où si et seulement 
a1 = −1− a0

a2 =
a0
2

∀n ⩾ 3, an+1 =
−1

n+ 1
an

On montre aisément par récurrence qu’alors, pour tout n ⩾ 3, an =
6(−1)n−3

n!
a3

On a ainsi, pour x ∈]−R,R[

y(x) = −x+ a0

(
1− x+

x

2

)
− 6a3

+∞∑
n=3

(−1)n

xn
n!

= −x+ a0

(
1− x+

x

2

)
− 6a3

(
e−x − 1 + x− x2

2

)
= −x+ (a0 + 6a3)

(
1− x+

x

2

)
− 6a3e

−x

21 Bastien Marmeth



Lycée La Martinière Monplaisir PT

Ainsi, si y est une solution développable en série entière alors il existe (a, b) ∈ R2 tel que

∀x ∈ R, y(x) = −x+ a
(
1− x+

x

2

)
+ be−x

Réciproquement on vérifie par un calcul rapide que les fonctions de cette forme sont bien des
solutions de l’équation différentielle.

D’après le théorème de Cauchy-Lipschitz, l’ensemble des solutions de cette équation différen-
tielle est une ensemble de la forme {x 7→ yp(x) + ay1(x) + by2(x) , (a, b) ∈ R2} où yp est une
solution de l’équation et (y1, y2) une famille libre de solutions de l’équation homogène associée.

La famille
(
x 7→ 1− x+

x

2
, x 7→ e−x

)
étant libre, on a bien trouvé toutes les solutions de l’équa-

tion différentielle.

Corrigé de l’exercice 21

1. L’équation différentielle u′′ − u = 0 a pour ensemble des solutions

S = {x 7→ A ch(x) +B sh(x) , (A,B) ∈ R2}

2. Soit y une fonction de classe C2 sur R et z : x 7→ x2y(x).
z est alors de classe C2 sur R et on a, pour x ∈ R,

z′(x) = 2xy(x) + x2y′(x), z′′(x) = 2y(x) + 4xy′(x) + x2y′′(x)

Ainsi x2y′′(x) + 4xy′(x) + (2− x2)y(x) = z′′(x)− z(x).
On en déduit que y est une solution de (E) si et seulement si z est donc une solution de
l’équation différentielle z′′ − z = 0.
Ainsi, y est une solution de (E) sur ]0,+∞[ ou sur ] − ∞, 0[ si et seulement si il existe

(A,B) ∈ R2 tel que y : x 7→ A ch(x) +B sh(x)

x2
.

3. On cherche une solution de (E) développable en série entière de la forme x 7→
+∞∑
n=0

anx
n de

rayon de convergence strictement positif.

La question précé-
dente nous permet
de répondre puis-
qu’on prouve assez
facilement que la
seule solution de (E)
sur ]0,+∞[ qui se
prolonge par conti-
nuité en 0 est la
fonction nulle. On
peut supposer que
l’examinateur vou-
lait voir si les candi-
dats savaient cher-
cher les solutions dé-
veloppables en série
entière d’une équa-
tion différentielle.

Inutile ?

Si y est développable en série entière de la forme x 7→
+∞∑
n=0

anx
n de rayon R > 0 alors, pour

x ∈]−R,R[ on a

x2y′′(x) + 4xy′(x) + (2− x2)y(x) =

+∞∑
n=2

n(n− 1)anx
n + 4

+∞∑
n=1

nanx
n + 2

+∞∑
n=0

anx
n −

+∞∑
n=0

anx
n+2

=

+∞∑
n=2

n(n− 1)anx
n + 4

+∞∑
n=1

nanx
n + 2

+∞∑
n=0

anx
n −

+∞∑
n=2

an−2x
n

=

+∞∑
n=2

(n(n− 1)an + 4nan + 2an − an−2)x
n + 6a1x+ 2a0

=

+∞∑
n=2

(
(n2 + 3n+ 2)an − an−2

)
xn ++6a1x+ 2a0

Par unicité du développement en série entière, y est alors solution de (E) si et seulement si
a0 = 0, a1 = 0 et, pour tout n ⩾ 2, an−2 = (n2 − 3n+ 2)an = (n+ 1)(n+ 2)an.

Pour n ⩾ 2 on a alors an =
an−2

(n+ 1)(n+ 2)
.

On en déduit par récurrence que pour p ∈ N, a2p+1 =
a1

(2p+ 2)!
= 0 et, pour p ⩾ 0,

a2p =
a0

(2p+ 2)!
= 0.
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Ainsi la seule solution de (E) développable en série entière au voisinage de 0 est la fonction
nulle.

4. Finalement y est une solution de (E) sur ]0,+∞[ ou sur ]−∞, 0[ si et seulement si il existe

(A,B) ∈ R2 tel que y : x 7→ A ch(x) +B sh(x)

x2
.

Si (A,B) ∈ R2 alors A ch(x) +B sh(x)

x2
=

x→0

A+Bx+ o(x)

x2
.

Une telle fonction admet une limite finie en 0 si et seulement si A = B = 0. La seule solution
admettant une limite finie à droite en 0 est la fonction nulle.

Corrigé de l’exercice 22
Soit (x, y) un couple de fonctions solution du système.

On a alors

x′′ = 7x′ − y′ = 7x′ − x− 5y = 7x′ − x− 5(7x− x′) = 7x′ − x− 35x+ 5x′ = 12x′ − 36x

Puisque x vérifie x′′ − 12x′ + 36x alors il existe (A,B) ∈ R2 tel que

∀t ∈ R, x(t) = (A+Bt)e6t

On a alors y = 7x− x′, d’où

∀t ∈ R, y(t) = (A−B +Bt)e6t

Réciproquement, s’il existe (A,B) ∈ R2 tel que

∀t ∈ R, x(t) = (A+Bt)e6t y(t) = (A−B +Bt)e6t

Alors on a bien y = 7x− x′ et, pour t ∈ R

y′(t) = (6A− 5B + 6Bt)e6t = x(t) + 5y(t)

Finalement, l’ensemble des solutions du système est l’ensemble des fonctions x : t 7→ (A+Bt)e6t

et y : t 7→ (A−B +Bt)e6t avec (A,B) ∈ R2.
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